

Lecture Notes in Computer Science 3636
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

María J. Blesa Christian Blum
Andrea Roli Michael Sampels (Eds.)

Hybrid
Metaheuristics

Second International Workshop, HM 2005
Barcelona, Spain, August 29-30, 2005
Proceedings

13

Volume Editors

María J. Blesa
Universitat Politècnica de Catalunya
Omega 213 Campus Nord
Jordi Girona 1-3, 08034 Barcelona, Spain
E-mail: mjblesa@lsi.upc.edu

Christian Blum
Universitat Politècnica de Catalunya
Omega 112 Campus Nord
Jordi Girona 1-3, 08034 Barcelona, Spain
E-mail: cblum@lsi.upc.edu

Andrea Roli
Università degli Studi "G. D’Annunzio"
Viale Pindaro 42, 65127 Pescara, Italy
E-mail: a.roli@unich.it

Michael Sampels
Université Libre de Bruxelles
IRIDIA CP 194/6
Avenue Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium
E-mail: msampels@ulb.ac.be

Library of Congress Control Number: 2005930813

CR Subject Classification (1998): F.2, F.1, G.1.6, G.1.2, G.2.1, I.2

ISSN 0302-9743
ISBN-10 3-540-28535-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28535-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11546245 06/3142 5 4 3 2 1 0

Preface

Combinatorial optimization and in particular the great variety of fascinating
problems that belong to this area have attracted many researchers for more than
half a century. Due to the practical relevance of solving hard real-world problems,
much research effort has been devoted to the development of heuristic methods
aimed at finding good approximate solutions in a reasonable computation time.
Some solution paradigms that are not specific for one particular problem have
been deeply studied in the past, and the term metaheuristic is now common for
such optimization heuristics. Several metaheuristics – simulated annealing, ge-
netic and evolutionary algorithms, tabu search, ant colony optimization, scatter
search, iterated local search, and greedy randomized adaptive search procedures
being some of them – have found their own research communities, and specialized
conferences devoted to such techniques have been organized.

Plenty of classical hard problems, such as the quadratic assignment prob-
lem, the traveling salesman problem, problems in vehicle routing, scheduling,
and timetabling, etc., have been tackled successfully with metaheuristic ap-
proaches. Several thereof are currently considered state-of-the-art methods for
solving such problems. However, for many years the main focus of research
was on the application of single metaheuristics to given problems. A tendency
to compare different metaheuristics against each other could be observed, and
sometimes this competition led to thinking in stereotypes in the research
communities.

In recent years, it has become evident that the concentration on a sole meta-
heuristic is rather restrictive for advancing the state of the art of tackling both
academic and practical optimization problems. A skilled combination of con-
cepts stemming from different metaheuristics can lead to more efficient behav-
ior and greater flexibility. Also the hybridization of metaheuristics with other
techniques known from classical artificial intelligence areas, for example data
mining, machine learning, etc., can be very fruitful. Further, the incorporation
of typical operations research techniques, such as integer or linear programming
techniques, branch-and-bound techniques, etc., can be very beneficial. Combina-
tions of metaheuristic components with components from other metaheuristics
or optimization strategies from artificial intelligence or operations research are
called hybrid metaheuristics.

The design and implementation of hybrid metaheuristics raises problems go-
ing beyond questions about the composition of a single metaheuristic. A careful
analysis of the single components is very important for their interaction. Choice
and tuning of parameters is more important for the quality of the algorithms
than before. Different concepts of interaction at low-level and at high-level are

VI Preface

studied. As a result, the design of experiments and the proper statistical evalu-
ation is more important than before.

The growing interest in research on hybrid metaheuristics and the observed
tendency that techniques uncommon in standard metaheuristic research had
become of special importance led us to organize a workshop devoted to this
particular area. The First International Workshop on Hybrid Metaheuristics
(HM 2004) took place in August 2004 in Valencia, Spain. The proceedings of
HM 2004 were published as ISBN 3-00-015331-4, and they are available on-
line (http://iridia.ulb.ac.be/∼hm2004/proceedings). They contain 13 papers se-
lected from 25 submission.

The success of the first workshop encouraged us to organize a Second Inter-
national Workshop on Hybrid Metaheuristics (HM 2005) in Barcelona, Spain.
The program committee of HM 2005 consisted of 23 researchers and practition-
ers mostly coming from the hybrid metaheuristics research community, but also
from related areas, and from business. We received 37 paper submissions to HM
2005. Each submitted paper was sent to at least three reviewers. We are very
grateful to the members of the program committee and the additional review-
ers for the effort they made carefully examining the papers and for the many
valuable comments and suggestions they gave to the authors. Based on their
comments, we finally accepted 13 submissions for publication and for presenta-
tion at HM 2005, resulting in an acceptance rate of roughly 35 %. The selection
of papers was rather strict in order to guarantee the high quality of the proceed-
ings and the workshop itself. We would like to thank all the authors for their
interest in our workshop.

We believe that the combination of elements coming from different meta-
heuristics, and from methods from both artificial intelligence and operations
research, promises to become one of the main tracks of research in applied arti-
ficial intelligence. It seems to be a propitious and rewarding alternative to the
still existing mutual contempt between the fields of exact methods and approx-
imate techniques, and also to the competition between the different schools of
metaheuristics, which sometimes focused more on a proof of concept than on
good results.

Still, we have to realize that research on hybrid metaheuristics is mostly
based on experimental methods, thus being probably more related to natural
sciences than to computer science. It can be stated that both the design and
the evaluation of experiments have still not reached the standard they have
in physics or chemistry for example. The validity of analyses of experimental
work on algorithms is a key aspect in hybrid metaheuristics, and the atten-
tion of researchers to this aspect seems to be important for the future of the
field.

We observed that the subject matter covered by the submissions to HM 2005
already showed a slight shift from academic to practical and real-world optimiza-
tion problems. To mention the practical applicability of hybrid metaheuristics
as a raison d’être seems no longer to be an academic excuse but a real fact. It

Preface VII

would be a great success if the growing interdisciplinary cooperation could help
to continue the trend of contributing more and more to the area of real-world
optimization problems by hybrid metaheuristic approaches.

June 2005 Maŕıa J. Blesa1

Christian Blum2

Andrea Roli
Michael Sampels

1 Maŕıa J. Blesa acknowledges partial support by the FET Programme of the EU
under contract number IST-2004-15964 (AEOLUS) and COST-295 (DYNAMO),
and also by the Spanish Science and Technology Ministry (MCyT) under contract
number TIC2002-04498-C05-03 (TRACER).

2 Christian Blum acknowledges the support of a post-doctoral fellowship under the
“Juan de la Cierva” program of the Spanish Ministry of Science and Technology.

Organization

Workshop Chairs

Maŕıa J. Blesa Universitat Politècnica de Catalunya, Barcelona,
Spain

Christian Blum Universitat Politècnica de Catalunya, Barcelona,
Spain

Andrea Roli Università degli Studi “G. D’Annunzio”, Chieti-
Pescara, Italy

Michael Sampels Université Libre de Bruxelles, Belgium

Program Committee

Enrique Alba Universidad de Málaga, Spain
Mauro Birattari Université Libre de Bruxelles, Belgium
Thomas Bousonville ILOG, France
Kirsten Bremke AT Kearney, Germany
Ralf Bruns Fachhochschule Hannover, Germany
Óscar Cordón Universidad de Granada, Spain
Carlos Cotta Universidad de Málaga, Spain
Luca Di Gaspero Università degli Studi di Udine, Italy
Marco Dorigo Université Libre de Bruxelles, Belgium
Filippo Focacci ILOG, France
Joshua Knowles University of Manchester, England
Frank Köster Universität Oldenburg, Germany
Andrea Lodi Università di Bologna, Italy
Vittorio Maniezzo Università degli Studi di Bologna, Italy
Monaldo Mastrolilli IDSIA, Switzerland
Daniel Merkle Universität Leipzig, Germany
Bernd Meyer Monash University, Australia
Michela Milano Università di Bologna, Italy
Olivia Rossi-Doria Università di Padova, Italy
Andrea Schaerf Università degli Studi di Udine, Italy
Thomas Stützle Technische Universität Darmstadt, Germany
El-Ghazali Talbi École Polytechnique Universitaire de Lille,

France
Fatos Xhafa Universitat Politècnica de Catalunya, Spain

X Organization

Additional Referees

Prasanna Balaprakash, Max Manfrin, Jose Santamaŕıa, Andrew Tuson

Sponsoring Institutions

Universitat Politècnica de Catalunya, Spain
Turisme de Barcelona (http://www.barcelonaturisme.com)
Direcció General de Turisme de Catalunya (http://www.gencat.net/ctc/turisme)
Transports Metropolitans de Barcelona (http://www.tmb.net)
Caves Freixenet
Caja Madrid
Punto Blanco

Table of Contents

Comparing Parallelization of an ACO: Message Passing vs. Shared
Memory

Pierre Delisle, Marc Gravel, Michaël Krajecki, Caroline Gagné,
Wilson L. Price . 1

An LP-Based Hybrid Heuristic Procedure for the Generalized
Assignment Problem with Special Ordered Sets

Alan P. French, John M. Wilson . 12

Parametrized Greedy Heuristics in Theory and Practice
Armin Fügenschuh . 21

A Taxonomy of Cooperative Search Algorithms
Mohammed El-Abd, Mohamed Kamel . 32

A Hybrid Genetic and Variable Neighborhood Descent for Probabilistic
SAT Problem

Zoran Ognjanović, Uroš Midić, Nenad Mladenović 42

A Hybrid Meta-heuristic Approach for Natural Gas Pipeline Network
Optimization

C. Borraz-Sánchez, R.Z. Rı́os-Mercado . 54

Hybrid Tabu Search for Lot Sizing Problems
João Pedro Pedroso, Mikio Kubo . 66

Fast Ejection Chain Algorithms for Vehicle Routing with Time Windows
Herman Sontrop, Pieter van der Horn, Marc Uetz 78

3D Inter-subject Medical Image Registration by Scatter Search
Oscar Cordón, Sergio Damas, J. Santamaŕıa, Rafael Mart́ı 90

Evolution Strategies and Threshold Selection
Thomas Bartz-Beielstein . 104

A Hybrid GRASP with Data Mining for the Maximum Diversity
Problem

L.F. Santos, M.H. Ribeiro, A. Plastino, S.L. Martins 116

A New Multi-objective Particle Swarm Optimization Algorithm Using
Clustering Applied to Automated Docking

Stefan Janson, Daniel Merkle . 128

XII Table of Contents

A Hybrid GRASP-Path Relinking Algorithm for the Capacitated
p – hub Median Problem

Melqúıades Pérez, Francisco Almeida, J. Marcos Moreno-Vega 142

Author Index . 155

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 1 – 11, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Comparing Parallelization of an ACO: Message
Passing vs. Shared Memory

Pierre Delisle1, Marc Gravel1, Michaël Krajecki2, Caroline Gagné1,
 and Wilson L. Price3

1 Département d’informatique et de mathématique,
Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada, G7H 2B1

{pierre_delisle, marc_gravel, caroline_gagne}@uqac.ca
2 Département de Mathématiques et Informatique,

Université de Reims Champagne-Ardenne – F-51687 Reims Cedex 2, France
michael.krajecki@univ-reims.fr

3 Faculté des Sciences de l’administration,
Université Laval, Québec, Canada, G1K 7P4
wilson.price@fsa.ulaval.ca

Abstract. We present a shared memory approach to the parallelization of the
Ant Colony Optimization (ACO) metaheuristic and a performance comparison
with an existing message passing implementation. Our aim is to show that the
shared memory approach is a competitive strategy for the parallelization of
ACO algorithms. The sequential ACO algorithm on which are based both
parallelization schemes is first described, followed by the parallelization
strategies themselves. Through experiments, we compare speedup and
efficiency measures on four TSP problems varying from 318 to 657 cities. We
then discuss factors that explain the difference in performance of the two
approaches. Further experiments are presented to show the performance of the
shared memory implementation when varying numbers of ants are distributed
among the available processors. In this last set of experiments, the solution
quality obtained is taken into account when analyzing speedup and efficiency
measures.

1 Introduction

Many interesting combinatorial optimization problems belong to the class said to be
NP-hard [1] and therefore cannot be solved in polynomial time by exact algorithms,
be they sequential or parallel. Metaheuristics offer a solution approach which, without
guaranteeing optimality, is generally able to produce good solutions. Because these
methods often require long computation times and considerable working memory,
parallelization would seem to be a promising avenue for performance improvement.
The field of parallel metaheuristics is, however, young and the transition between a
conventional sequential metaheuristic and an efficient parallel implementation is
neither simple nor obvious.

Works describing parallel approaches to combinatorial optimization problems are
generally based on one of the two following paradigms: message passing and shared

2 P. Delisle et al.

memory. However, most of the recent literature is based on the message passing
model which is better known and more mature. The recent emergence of shared
memory multiprocessors such as the SMP (Symmetric Multiprocessor) revived
interest in the shared memory model, but shared memory implementations of
metaheuristics are rare and it is therefore difficult to evaluate the potential of this
approach. The aim of this paper is to propose a shared memory approach to the
parallelization of the Ant Colony Optimization (ACO) metaheuristic and to compare
its performance with a message passing implementation described by Randall &
Lewis [2]. The ACO algorithm they use as a basis for their implementation is very
similar to ours, as is the algorithmic approach to parallelization. For these reasons, we
found a comparison of the experimental results of the two approaches to be
particularly interesting and appropriate.

2 The ACO and Literature Review on Its Parallelization

The version of the ACO used by Randall & Lewis is described in Fig. 1. It is the
ACO proposed by Dorigo & Gambardella [3] for the solution of the travelling
salesman problem. However, Randall & Lewis did not use a candidate list in the
transition rule to limit computations and no local search is incorporated in the
algorithm. It is important to define the specific version of the algorithm being used to
ensure a fair comparison of the two parallel implementations of the ACO.

Briefly, the description of the metaheuristic is as follows: the initial cycle of the
algorithm starts with a random choice of the starting city for each of the ants. For each
ant, tours are then constructed by adding cities one at a time. A certain number of ants
(m), which may be considered to be independent agents, construct tours
simultaneously. Each city is added to the tour according to a transition rule
(Expression 1) which takes into account the visibility d (distance) as well as the
accumulation of the pheromone trail (t) which is a form of memory of the quality of
solutions found so far. As a new city is added to the tour, a local update of the
pheromone trail (Expression 2) is carried out to reduce the probability of other ants
repeating the same choice. When all ants have completed a tour, a global update of
the pheromone trail is made (Expression 3) using the best tour (L+) found in the cycle.
If required, the best solution found so far is updated and a new cycle commences.

There are few parallel implementations of the ACO in the literature because it is a
relatively new metaheuristic. Using the message passing model, Bullnheimer et al. [4]
proposed two parallel versions of the Ant System: a synchronous version and a
partially asynchronous version. The parallel synchronous version may be thought of
as a low-level parallelization whose aim is to accelerate the algorithm by the
generation of parallel ants in a master-slave fashion. At each cycle, the master
broadcasts the pheromone trail matrix to the slaves and each slave constructs a tour
which, along with its tour-length, is reported to the master. A synchronization of the
process is carried out at each iteration. To reduce communication costs in the
synchronous version, these authors developed a partially synchronous version where a
number of cycles of the sequential algorithm are carried out independently on
different processors. Following these “local” iterations, a global update is carried out
by the master. Subsequent to a comparison of the performance of these two versions

 Comparing Parallelization of an ACO: Message Passing vs. Shared Memory 3

of the algorithm, the authors concluded that the partially asynchronous version is
preferable because it allows a major reduction in the frequency and volume of
communications. Note that these algorithms were not implemented on a parallel
architecture and it is difficult to determine the efficiency of their parallelization
scheme.

Set the pheromone trail matrix τ(0) at τ0 = (n Lnn)

-1 for each pair of city ij;
FOR t = 0 to tMax DO

**** Ant construction and local update of the pheromone trail ****
FOR k = 1 to m DO

Place ant k on a randomly chosen city;
End FOR
FOR i = 1 to n-1 DO

FOR k = 1 to m DO

Choose the next city j k
iJ to visit according to :

()[]

>

≤⋅
= ∉

0

0
Tabuk

 if

 if
1

max arg

 qq J

 qq
d

t
j i

iτ

where J is chosen according to the probability: (1)

()[]

()[]
∉

⋅

⋅
=

kTabou i
i

ij
ij

k
ij

d
t

d
t

tp
1

1

)(

τ

τ

Local update of the pheromone trail for (i, j):

0)()-(1)(τρτρ ⋅+⋅= tt ijij (2)

Update the length tour Lk with the addition of the city j;
End FOR

End FOR
*** Best solution and global update of the pheromone trail ***
Update of L+, the best solution so far found;
Global update of the pheromone trail using L+:

()ttt ijgijgij τρτρ Δ⋅+⋅=+)()-(1)1((3)

End FOR

Fig. 1. Description of the sequential ACO (Randall & Lewis)

Stützle [5] presents two strategies for parallelization using a message passing
architecture: the execution of multiple copies of the same algorithm, and the
acceleration of a single copy of the algorithm. In the first case, one may use the same
search parameters or vary them for each of the parallel runs. While the author did not

4 P. Delisle et al.

obtain significant differences between the two approaches when he used them in
applying the Max-Min Ant System to the travelling salesman problem, he suggests
that performance differences could occur for other problems. The second case, that
aimed at the acceleration of a single execution of the algorithm, is similar to the
synchronous version described by Bullnheimer et al., but in addition it uses a local
search procedure. An efficient parallelization can therefore be obtained by applying a
local search in parallel to solutions previously generated.

Talbi et al. [6] successfully solved the quadratic assignment problem using a
parallel approach. They proposed a parallel model of the ACO similar to the
synchronous model of Bullnheimer et al., however they used Tabu Search as a local
improvement method.

Michel & Middendorf [7] proposed an island model of the ACO where colonies
exchange the best solutions they have found after a fixed number of cycles. When a
colony receives a solution that is better than its own best solution, an update is carried
out. This new information influences the colony because the pheromone trail updates
are carried out using this solution.

Middendorf et al. [8] studied four strategies for the exchange of information
among multiple ant colonies. They show that it may be advantageous for the colonies
to avoid exchanging too much information and to avoid too frequent exchanges.
Abandoning the idea of exchanging complete pheromone trail matrices, they based
their strategies on the exchange of a single solution at a time. They thus obtained
efficient parallel implementations.

Randall & Lewis [2] proposed five strategies for the parallelization of the ACO
and give detailed results obtained using one of these strategies. In the following
section, we describe this strategy and the results obtained by Randall & Lewis will be
used as a basis for comparison with a shared memory parallelization approach that we
ourselves propose.

3 The Randall & Lewis Message Passing Parallelization of the
 ACO

Randall & Lewis [2] developed a parallel ACO to solve the travelling salesman
problem on a distributed memory architecture. Their approach of the “parallel ant”
type is an internal parallelization composed of a master processor and multiple slave
processors. Each of the slaves is assigned to an ant and is tasked with the construction
of a tour. The master receives the input from the user, assigns a starting city to each
ant, carries out the local and global updates of the pheromone trail and produces the
output results. Fig. 2 and 3 describe the activities of the master and the slaves in
pseudo-code.

It must be noted that the algorithm of Randall & Lewis assigns only one ant to each
processor. In their numerical experiments, the number of processors varies from 2 to
8, ρg = 0.1, q0 = 0.9, tMax=1000 and = 2.

 Comparing Parallelization of an ACO: Message Passing vs. Shared Memory 5

Broadcast the algorithm parameters to each ant
Broadcast the d matrix to each ant
FOR t = 0 to tMax DO

Place ant k on a randomly chosen city
Send each initial city to each ant
FOR i = 1 to n-1 DO

Receive each ant’s next city and add it to the corresponding tour
Update the pheromone matrix using the local update rule
Broadcast m pheromone update of the matrix to each ant

 End FOR
Receive the length tour L from each ant
Update of L+, the best solution so far found
Global update of the pheromone trail using L+
Broadcast the pheromone update of the matrix to each ant

End FOR
Broadcast the termination condition to each ant
Print the shortest tour and its length L+

Fig. 2. Pseudo-code for the master processor

Receive the algorithm parameters from the master
Receive the matrix d from the master
Initialize the pheromone matrix
WHILE the termination condition is met DO

Initial_City = City = Initial city receive from the master
FOR i = 1 to n-1

Next_City = Choose the next city according the equation (1)
Send Next_City to the master
L = L + d (City, Next_City)
City = Next_City
Receive the m pheromone update of the matrix from the master

End FOR
L = L + d (Next_City, Initial_City)
Send L to the master
Receive the pheromone update of the matrix from the master
Receive the termination information signal from the master

End WHILE

Fig. 3. Pseudo-code for the slave processors

4 A Shared Memory Parallelization of the ACO

In this section, we propose a shared memory parallelization approach of the internal,
fine-grain type. Certain inherent constraints on the sequence of operations must be
respected in the parallel version so as to preserve the integrity of the search for
solutions. The distribution of ants to the processors must allow the simultaneous

6 P. Delisle et al.

construction of solutions and the local update must be carried out each time a city is
added to a tour. Using a local update strictly equivalent to that used in the sequential
algorithm would require an onerous synchronization and would be a severe limit on
the potential of the parallelization. We have examined the quality of solutions to
problems having as many as 2,000 cities [10] and found that the search process is not
adversely affected. We therefore conclude that it is desirable to relax this requirement.
Moreover, certain precedence relations for the update of the best solution so far found
must be preserved. This update can only be done one processor at a time if one is to
avoid data integrity problems. Finally, one must ensure that all the processors have
constructed, evaluated and compared their solutions to the best known solution before
a global update is undertaken within a given cycle.

The parallelization proposed is described in Fig. 4. It distinguishes three groups of
operations that are treated separately in a single parallel region. The first group of

Initialize
FOR t = 0 to tMax DO

Choose randomly the first city for each of the m ants
*** Start a parallel region with m processors ***

NoProc = Index of the processor
FOR i = 1 to n DO

 FOR k = 1 to m DO
 If NoProc = = k modulo m
 Choose the next city to visit for ant k
 Update the length tour Lk with the city added to the tour
 *** Critical Zone ***
 Local update of by the processor k
 End FOR
 End FOR
 FOR k = 1 to m DO
 If NoProc = = k modulo m
 If Lk < L+
 *** Critical Zone ***

 Update of L+, the best solution so far found

End FOR
 *** Synchronization barrier ***

FOR i = 1 to n DO
 If NoProc = = i modulo m
 FOR j = 1 to n DO
 Apply equation (3) for edge (i, j)
 End FOR
 End FOR
 Global update of the pheromone trail using L+
 *** End the parallel region ***
End FOR
Print L+

Fig. 4. Pseudo-code for the parallelization in shared memory

 Comparing Parallelization of an ACO: Message Passing vs. Shared Memory 7

parallel operations equitably distributes the ants to processors and imposes a
desynchronization of the local update of the pheromone trail. The second group of
parallel operations carries out the update of the best solution known so far. By again
equitably distributing the ants among processors, we allow a processor that has
completed constructing its solutions to update the best known solution even if the
other processors have not yet completed the first group of operations. The processor
in question compares its best solution to the best solution stored in shared memory
and updates it if required. This update must, on the other hand, be carried out within
the critical zone to guarantee that a single processor will write to this data structure at
a given moment. Finally the third group of parallel operations carries out the global
update of the pheromone trail by uniformly distributing the update of the lines of the
matrix to different processors. However, this procedure must be preceded by a
synchronization barrier that ensures that all the processors have finished the treatment
of all the ants and that the best solution has, in fact, been updated. Let us note that, in
the three groups of operations in the parallelization, the computing load associated
with the tasks that are carried out in parallel is regular and that a static scheduling is
therefore sufficient.

This parallelization in shared memory may be used with any number of ants. If we
use a number of ants equal to the number of processors, we obtain the configuration
used by Randall & Lewis. The numerical experiments were carried out using the same
conditions as used in the message passing approach so as to obtain a valid
comparison.

5 Experimentation and Results

The experiments of Randall & Lewis were carried out on eight travelling salesman
problems having between 24 and 657 cities, using an IBM SP2 computer having 18
266Mhz RS6000 model 590 processors. However, in the current comparison, only the
four biggest problems were retained. The experiments in shared memory were carried
out using 16 375Mhz Power3 processors on a NH2 node of an IBM/P 1600. We seek
an approach that is as general as possible and not particular to a given type of
computer, and our implementation of the parallelization strategy was facilitated
through the use of OpenMP which is a new tool that allows the development of
programs portable to a number of shared memory parallel computers.

Table 1 compares speedup and efficiency, which are the two performance
measures used by Randall & Lewis in their paper, for both approaches. However, it is
important to note that our performance measures were not produced by following the
exact same guidelines. For each problem, Randall & Lewis performed a single
execution with a fixed seed and calculated speedup with the following formula:

Speedup = Time to solve a problem with the fastest serial code on a specific parallel computer
 Time to solve the problem with the parallel code using p processors on the same computer

The numerator was measured by CPU time and the denominator was measured by
wall clock time. We used the same formula and time measures to calculate speedup.
However, our results are the average of ten trials with different seeds, which seemed
to be a realistic setup for stochastic algorithms such as ACO. The method of Randall
& Lewis for calculating speedup follows more strictly the guidelines outlined by Barr

8 P. Delisle et al.

and Hickman [9], however our method is also generally accepted. For this reason, the
results presented here should be interpreted as showing trends rather than comparing
strict numerical measures.

Table 1. Speedup and efficiency

Message-passing (Randall & Lewis) Shared-memory
Number of processors Number of processors

Problems

2 3 4 5 6 7 8 2 3 4 5 6 7 8
lin318

(318 cities)
1.20
0.60

1.44
0.48

1.44
0.36

1.59
0.32

1.61
0.27

1.53
0.22

1.58
0.20

1.65
0.83

2.39
0.80

3.09
0.77

3.64
0.73

4.15
0.69

4.63
0.66

4.77
0.60

pcb442
(442 cities)

1.42
0.71

1.62
0.54

1.93
0.48

2.18
0.44

2.31
0.38

2.31
0.33

2.35
0.29

1.71
0.86

2.47
0.82

3.26
0.81

4.02
0.80

4.57
0.76

5.24
0.75

5.55
0.69

rat575
(575 cities)

1.56
0.78

1.78
0.59

2.10
0.52

2.55
0.51

2.77
0.46

3.02
0.43

3.08
0.38

1.78
0.89

2.54
0.85

3.23
0.81

3.95
0.79

4.62
0.77

5.14
0.73

5.74
0.72

d657
(657 cities)

1.67
0.83

1.95
0.65

2.32
0.58

2.89
0.58

3.25
0.54

3.29
0.47

3.30
0.41

1.74
0.87

2.62
0.87

3.39
0.85

4.12
0.82

4.83
0.80

5.36
0.77

6.14
0.77

We note that the performance of the shared memory approach is superior in all
cases. The measures of speedup are larger and increase more rapidly when the
number of processors is increased. For efficiency, the measures are also better and
their decrease is slower. A number of factors can explain these differences in
performance :

• In the algorithm of Randall & Lewis, for each local update, all of the slaves
send a message to the master and wait for the master’s broadcast of the
updates to carry out before continuing the construction of their respective
solutions. This processor inactivity is minimized in the shared memory
approach by the desynchronization of the local update;

• Management of the access to shared memory and of the synchronizations
may be more efficient at the software and hardware levels than is the case for
message passing routines for this type of parallelization;

• The parallel computer used in the shared memory experiments is more
technologically advanced and is probably better at managing parallel
computations;

• Various other technical factors such as the compiler and the quality of the
code may influence performance.

Even if it is not possible to draw certain conclusions concerning the actual
relevance of each of these factors, it would seem reasonable to believe that because of
some combination of them, the shared memory approach performs better.

In Delisle et al. [10], it was established that it is generally preferable to increase the
workload on the processors by assigning several ants to each. It is therefore
interesting to consider numerical experiments that do not use a single ant per
processor as did Randall & Lewis. The 657 cities problem was therefore solved using
10, 20 and 40 ants shared equally among the processors. The number of cycles carried
out in each experiment was, however, reduced so as to maintain the total number of
operations obtained in the previous version. Table 2 presents a comparison of the

 Comparing Parallelization of an ACO: Message Passing vs. Shared Memory 9

results obtained. We note that the increase in the number of ants assigned to each
processor results in a significant increase in the parallel performance. When m = 40,
the measures of efficiency vary from 82% to 92% regardless of the number of
processors used.

Table 2. Solution quality (% of the best known solution), speedup and efficiency obtained by
varying the number of ants per processor for the shared memory approach (Problem d657)

Number of processors
m 2 3 4 5 6 7 8

Equal to the
number of
processors

0.294
1.74
0.87

0.289
2.62
0.87

0.280
3.39
0.85

0.292
4.12
0.82

0.294
4.83
0.8

0.303
5.36
0.77

0.303
6.14
0.77

10

0.342
1.82
0.91

0.344
2.34
0.78

0.343
2.99
0.75

0.333
4.09
0.82

0.348
4.13
0.69

0.324
4.18
0.60

0.321
4.29
0.54

20

0.368
1.87
0.94

0.357
2.61
0.87

0.340
3.58
0.90

0.355
4.29
0.86

0.341
4.49
0.75

0.334
5.63
0.80

0.332
5.65
0.71

40

0.371
1.84
0.92

0.362
2.66
0.89

0.352
3.56
0.89

0.344
4.35
0.87

0.356
4.97
0.83

0.348
5.74
0.82

0.348
6.71
0.84

Table 3. Solution quality (% of the best known solution), speedup and efficiency obtained by
varying the number of ants per processor for the shared memory approach with a constant
number of cycles (Problem d657)

Number of processors
m 2 3 4 5 6 7 8

10
0.316
1.84
0.92

0.311
2.34
0.78

0.300
3.04
0.76

0.319
4.14
0.83

0.304
4.18
0.70

0.327
4.21
0.60

0.320
4.31
0.54

20

0.320
1.87
0.93

0.321
2.65
0.88

0.325
3.63
0.91

0.309
4.49
0.90

0.320
4.65
0.77

0.331
5.78
0.83

0.318
5.79
0.72

40

0.322
1.88
0.94

0.324
2.69
0.90

0.329
3.68
0.92

0.321
4.56
0.91

0.315
5.17
0.86

0.320
5.96
0.85

0.313
7.07
0.88

As to the solution quality, the reduction in the number of cycles to preserve the
same number of operations causes a slight reduction in the average quality of
solutions obtained. Quality of a particular solution is measured as the percentage gap
between the value of the best known solution for this problem (48912) and the value
of the solution considered. If the number of ants is fixed at 10, to preserve the same
number of evaluations, the number of cycles goes from 200 (for 2 processors) to 800
(for 8 processors). If the number of ants is fixed at 20, for the same reason, the
number of cycles will go from 100 (for 2 processors) to 400 (for 8 processors). For 40

10 P. Delisle et al.

ants, the range is from 50 cycles (for 2 processors) to 200 cycles (for 8 processors). If
the number of cycles of the algorithm remained constant at 1000 whatever the number
of processors used, the results of Table 3 allow us to see that the measures of
efficiency increase again and that the quality of the solutions increases as well. The
configuration where m=10 allows us to obtain solutions close to the quality of those
obtained in Table 2 where the number of ants is equal to the number of processors.

In any case numerical experiments where the parameter values are varied allow us
to draw better conclusions concerning quality. In Delisle et al. [10], it was also shown
that the use of local search methods improved solution quality and preserved good
values of efficiency and of speedup.

6 Conclusion

The objective of the comparisons presented in this work is not to determine the
superiority of one parallel implementation over another. As pointed out in this article,
many technical factors can influence performance and prevent the drawing of
definitive conclusions about the quality of the parallelization approaches discussed.
By reproducing as closely as possible the parallelization context of an ACO via
message passing, we sought to show that the shared memory architecture offers a
competitive avenue for the parallelization of this metaheuristic. We also wanted to
show that it is possible to obtain good results in such an environment while respecting
the constraints of the sequential approach. We also showed that a more realistic
choice of parameter values as to the number of ants used by the algorithm has a
positive impact on the performance when the number of processors varies from 2 to 8.
This is a configuration found on currently available and reasonably priced shared
memory parallel computers.

The comparisons in this paper use a form of internal parallelization, but another
popular parallelization strategy for the ACO is the establishment of multiple colonies
which may be cooperative or independent. This approach has already been studied in
the message passing context [5][8]. In future work, we will explore a parallelization
using multiple colonies in a shared memory environment and we will compare results
with existing approaches. A further approach that we suggest is the creation of hybrid
shared memory/message passing algorithm. This approach would allow, for example,
the evolution of a number of cooperative colonies that communicate by message
passing on the nodes of an SMP cluster. Each colony could therefore be internally
parallelized on each multiprocessor, shared memory node. The potential of such
architectures could allow the solution of large scale problems with reasonable
computing times.

References

1. Garey, M.S., Johnson, D.S.: Computer and Intractability : A Guide to the Theory of NP-
Completeness. New York, W.H. Freeman and Co. (1979)

2. Randall, M., Lewis, A.: A Parallel Implementation of Ant Colony Optimization. Journal of
Parallel and Distributed Computing, Academic Press Inc, 62, 2 (2002) 1421-1432

 Comparing Parallelization of an ACO: Message Passing vs. Shared Memory 11

3. Dorigo, M., Gambardella, L.M.: Ant colonies for the Traveling Salesman Problem.
BioSystems, 43 (1997) 73-81

4. Bullnheimer, B., Kotsis, G., Strauss, C.: Parallelization Strategies for the Ant System. In:
R. De Leone, A. Murli, P. Pardalos, and G. Toraldo (Ed.), High Performance Algorithms
and Software in Non-linear Optimization , Kluwer Academic Publishers (1998) 87-100

5. Stützle, T.: Parallelization Strategies for Ant Colony Optimization. In: Proceedings of
Parallel Problem Solving from Nature -- PPSN-V, Amsterdam, Lecture Notes in Computer
Sciences, Springler Verlag, A.E. Eiben, T. Bäck, M. Schoenauer, and H.P Schwefel (ed.)
(1998) 722-731

6. Talbi, E.-G., Roux, O., Fonlupt, C., Robillard, D.: Parallel Ant Colonies for Combinatorial
Optimization Problems. In: BioSP3 Workshop on Biologically Inspired Solutions to
Parallel Processing Systems, IEEE IPPS/SPDP'99 (Int. Parallel Processing Symposium /
Symposium on Parallel and Distributed Processing), J. Rolim, San Juan, Puerto Rico,
USA, Springer-Verlag (1999)

7. Michel, R., Middendorf, M.: An Ant System for the Shortest Common Supersequence
Problem. In New Ideas in optimization, D. Corne, M. Dorigo, F. Glover (ed.) (1999) 51-61

8. Middendorf, M., Reischle, F., Schmeck, H.: Information Exchange in Multi Colony Ant
Algorithms. In Parallel and Distributed Computing, Proceedings of the 15 IPDPS 2000
Workshops, J.Rolim, G. Chiola, G. Conte, L.V. Mancini, O.H. Ibarra and H. Nakano
(Ed.), Cancun, Mexico, Lecture Notes in Computer Sciences, Springer-Verlag (2000) 645-
652

9. Barr, H., Hickman, B.: Reporting computational experiments with parallel algorithms:
Issues, measures and experts' opinions. ORSA Journal of Computing, 5 (1993) 2-18.

10. Delisle, P., Gravel, M., Krajecki, M., Gagné, C., Price, W.L.: A Shared Memory Parallel
Implementation of Ant Colony Optimization. Working Paper, Université du Québec à
Chicoutimi (2005)

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 12 – 20, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An LP-Based Hybrid Heuristic Procedure for the
Generalized Assignment Problem with Special

Ordered Sets

Alan P. French and John M. Wilson

Business School, Loughborough University,
Loughborough LE113TU, England

{a.p.french, j.m.wilson}@lboro.ac.uk

Abstract. The generalized assignment problem with special ordered sets
(GAPS2), is the problem of allocating n tasks to m time-periods, where each
task must be assigned to a time-period, or shared between two consecutive
time-periods. For large values of m and n the NP-hard combinatorial problem
GAPS2 becomes intractable for standard mathematical programming software
such as CPLEX or XPRESSMP and it is unlikely that a proven optimal solution
can be obtained. There is thus a need for heuristic algorithms to solve such
problems. It will be shown how a combination of linear programming
techniques and two heuristics forming a hybrid can be used to solve GAPS2.
Good results, in terms of speed and accuracy, on large problem instances have
been obtained. In particular when compared to an existing heuristic for GAPS2,
the results look particularly promising.

Keywords: Assignment, generalized assignment, heuristics, hybrid metaheu-
ristic, special ordered sets.

The generalised assignment problem with special ordered sets (GAPS2) is the
problem of allocating tasks to time-periods, such that total cost is minimized, where
each task must be allocated to one time-period (or split between two consecutive
time-periods), more than one task or parts of tasks may be allocated to a particular
time-period, but each time period is limited. The problem may be formulated as

follows using the notation ijx = proportion of task j allocated to time-period i, ijc =

cost of allocating task j to time-period i (ijc >0), b = length of each time-period, ja =

time required to execute task j (jab ≥ >0). It is assumed that any task can be

executed within a time-period, but may be split between two consecutive periods.
Tasks are also assumed to be non-preemptable.

GAPS2

minimize z =
= =

m

i

n

j
ijij xc

1 1

 (1a)

An LP-Based Hybrid Heuristic Procedure for the GAPS2 13

subject to
=

≤
n

j
ijj bxa

1

, i ∈M = {1,2, ... ,m} (2a)

=

=
m

i
ijx

1

1 , },...,2,1{ nNj =∈ (3)

where { Mixij ∈ε: } is a special ordered set of type 2 (S2) for each j ∈ N that is

ijx >0

{(jix ,1− = 0 and jix ,1+ = 1 - ijx) OR (jix ,1+ = 0 and jix ,1− = 1 - ijx)} (4)

Special ordered sets of type 2 (S2 sets) were introduced by Beale and Tomlin (1970)
and further developed by Beale and Forrest (1976). Integer programming (IP)
problems containing special ordered sets of variables are solvable using an extension
to the branch and bound algorithm and this is provided in standard IP solvers.

In the formulation (1a) gives the expression of total cost which is to be minimized.
Constraints (2a) ensure that in each time period the total time used by allocated tasks
is within the limit. Constraints (3) – (4) ensure that each task is allocated to a time
period, or shared between consecutive ones.

For the purposes of more thorough computational testing the above formulation

will be generalized slightly so that coefficient ja will be allowed to vary with time-

period i (ijw will be used to denote this) and not all time-periods will be of the same

length (ib will be used to denote this, where iij bw ≤ , j∀). The objective function

will also be generalized so that it can refer to profit (ijp) as well as cost. Thus (1a)

and (2a) are replaced by:

maximize (or minimize) z =
= =

m

i

n

j
ijij xp

1 1

 (1)

subject to
=

≤
n

j
iijij bxw

1

, i ∈ M = {1,2, ... ,m} (2)

GAPS2 was introduced by de Farias Jr et al.(2000) and is an extension of the NP-
hard generalized assignment problem (GAP). A formulation of GAP would be (1)-(3)

with (4) replaced by the requirement ijx = 0 or 1 i ∈ M , j ∈ N . Much research has

been conducted on GAP. Wilson (2002) reviews many earlier papers so we shall only
mention here the most recent ones. Tabu search approaches to GAP have been
developed by Diaz and Fernandez (2001) and Higgins (2001), who tackles large
problems, a path re-linking method has been developed by Yagiura et al. (2002) and
an ejection chain approach by the same authors in Yagiura et al. (2004a), a paper by
Nauss (2002) develops heuristic approaches but also embeds them in an exact
approach, and finally a paper by Haddadi and Ouzia (2004) uses a Lagrangian

14 A.P. French and J.M. Wilson

approach. These papers are indicative that research into both exact and heuristic
methods for GAP is still active. Further related work on an extension of GAP appears
in Yagiura et al (2004b).

GAPS2 has been less extensively studied. Wilson (2002) presents a
straightforward heuristic for large instances of the problem, in contrast to de Farias Jr
et al. (2000) who solved smaller instances of the problem by an exact method based
on a polyhedral approach. Applications of the problem, as discussed in de Farias Jr et
al. (2000) arose in the context of fibre optics cable production scheduling. A series of
jobs had to be scheduled. In that paper sharing of jobs occurred across adjacent time
periods. Similar problems will occur if jobs are shared across adjacent machines or
tasks between groups of personnel that can be regarded as adjacent in some sense. It
is unlikely that the methods developed in de Farias Jr et al. (2000) could be used to
solve problem instances of the size intended in this paper.

For reasonably large values of m and n the NP-hard combinatorial problem GAPS2
becomes intractable for standard IP software systems such as XPRESSMP, hence there
is a need for the development of heuristic algorithms to solve such problems.

In this paper a new heuristic approach for GAPS2 will be developed. The heuristic
is based on ideas developed by Trick (1992) whose heuristic for GAP is
acknowledged to be very effective (see for instance Savelsbergh, 1997) provided it
can find a feasible solution to a problem instance. The GAPS2 heuristic approach
subsequently derived is fast and accurate and considerably outperforms a single-pass
heuristic of Wilson (2002). Thus although the ideas behind the heuristic are relatively
straightforward, one contribution of this paper is to demonstrate that by adaptation a
heuristic that could be very effective in some instances of GAP, but not in others, can
be made to be particularly effective for GAPS2. The hybrid heuristic approach
developed combines the use of linear programming techniques to guide the search
followed by the use of two heuristics to repair and advance solutions.

1 Adapting an Existing GAP Heuristic

The heuristic of Trick (1992) for GAP takes advantage of the fact that the solution to
the linear relaxation of GAP (i.e. (1)-(3) with (4) removed) is such that at most m
variables will have non-integer values (and this is encouraging because m is normally
small compared to n). The heuristic for GAP for a maximize problem may be
summarised as follows.

Step 0 Set NjMixij ε;,0" ∈= . Let NN =' and φ=U .

Step 1 Solve the linear relaxation of GAP. Let the solution be { '
ijx }.

Step 2 For each 'Nj ∈ if 1' =ijx Mi ∈ set 1" =ijx and let

}{\'' jNN = . Calculate
=

−=
n

j
ijijii xwbs

1

" . If φ='N stop,

{ "
ijx } is the solution.

An LP-Based Hybrid Heuristic Procedure for the GAPS2 15

Step 3 For any pair {i,j}, 'Nj ∈ , such that iij sw > ,let

},{ jiUU ∪= .

Step 4 Solve the problem R

 Maximize
=

m

i
ijij

Nj

xp
1 'ε

 Subject to ≤
'Nj

iijij sxw
ε

, Mi ∈

 1
1

=
=

m

i
ijx , 'Nj ∈

 Ujixij ∈= },{0

and let the solution be { '
ijx }.

If this problem is infeasible then GAP is declared infeasible.
 Go to Step 2.

In order to adapt the above heuristic to solve GAPS2, a change will be required in
Step 3. Step 3 is the method by which fractional values of variables are avoided in
successive iterations, however this step is not usable for GAPS2 without modification
because fractional values of variables are acceptable (provided exactly two adjacent
periods are involved). Step 3 is the key step in ensuring that the problem to be solved
at Step 4 is a new problem by fixing useless variables (Trick’s terminology) at zero,

otherwise the LP solver would always provide the same '
ijx values.

For GAPS2 Step 3 can be generalized to the condition:

If 10 ' << ijx for some period i and job j and 00 '
,1

'
,1 == +− jiji xandx then if

1<+
ij

i

kj

k

w

s

w

s
for both k = i+1 and k = i-1 hold ijx is a useless variable and its

subscripts can be added to the set U. However, there might be no value of i for which
this condition holds even though fractional values of variables remain in problem R.
Therefore the GAP heuristic needs much more extensive adaptation before it can be
used on GAPS2. Before this is considered some further remarks are necessary.

The difficulty of obtaining feasible solutions using Trick’s heuristic is alluded to
by Cattryse et al. (1998), but the phenomenon did not occur in the work of that paper
or in Trick (1992) as severely as experienced by the authors of the current paper. This
outcome was slightly unexpected. GAPS2 should be ‘easier’ to solve than GAP
because certain solutions feasible to GAPS2 would not be feasible for GAP, but it
transpired that our test problems were rendered both GAP-infeasible and GAPS2-
infeasible after the first pass through the GAP heuristic. Thus a rather more extensive
modification of the original heuristic will be required to solve realistic sized GAPS2
instances.

16 A.P. French and J.M. Wilson

2 A Heuristic for GAPS2

In this section we develop an LP-based heuristic to solve GAPS2. In essence the
heuristic proceeds by solving a series of linear relaxations of the GAPS2 (i.e. (1)-(3)
with (4) removed). After solving each relaxation, there are three possibilities:

1. A feasible solution to GAPS2 has been found, i.e. any fractional '
ijx values

satisfy the special ordered sets constraints (4). In this case, the heuristic
terminates and passes control to a perturbation phase (described later).

2. The linear relaxation is infeasible. In such cases, the heuristic has failed to find
a feasible solution to the related GAPS2 problem and terminates. In practice,
this situation was not observed.

3. The linear relaxation is feasible, but there are at least two fractional '
ijx values

that do not satisfy the special ordered sets constraints (4). In this case, the

heuristic tightens the linear relaxation by fixing a number of '
ijx values to zero,

and solves the tightened linear relaxation.

2.1 Fixing Criteria to Facilitate Heuristic Progress

The heuristic seeks to find a solution by solving a succession of tightened linear
relaxations. In order for the heuristic to progress, it needs to fix at least one illegally
assigned task-period allocation to zero. A degradation value is calculated for each
illegal task-period combination:

ij

ijiij
ij w

xbp '

deg =

Clearly, it is desirable to minimise the degradation in the objective whilst maximising
the amount of space freed up. This is achieved by multiplying the objective

degradation by the reciprocal of the slack proportion. '
ijx is included in the

degradation to take account of the magnitude of change. For example, given two task-
period allocations with the same degradation measure, with respective fractional
values of 0.1 and 0.9, it is preferable to fix the first at zero.

For each currently illegally assigned task, the task-period allocation with the
smallest degradation value is fixed at zero.

2.2 Fixing Criteria to Improve Heuristic Performance

Simply fixing a single illegal task-period allocation at zero proves to be impractical as
the problem size grows. Therefore, in order to improve the performance of the
heuristic, it is also necessary to fix other task-period combinations to zero.

For each task, all '
ijx values are fixed at zero, except for the current fractional (i.e.

non-zero) '
ijx values and the '

ijx values currently equal to one, and the periods

An LP-Based Hybrid Heuristic Procedure for the GAPS2 17

immediately preceding and following, thus allowing tasks to be split between two
consecutive periods.

2.3 The LP-Based Heuristic

Step 0 Solve GAPS2 (1), (2) and (3) ignoring the S2 constraints (4). Let

{ '
ijx } be the solution values.

Step 1 If all tasks are legally assigned then go to Step 6.
Else if the LP solution is infeasible, then terminate and report no
feasible solution as being found.

Step 2 Let J = {j∈N | ∃i∈M : '
ijx = 1} ∪ {j∈N | ∃i∈M \ {m} : '

ijx + '
,1 jix +

= 1}

Let 'J = N \ J (i.e. the set of illegally assigned tasks)

Step 3 For each j∈ 'J

Let 'M = {i∈M | '
ijx > 0}

For each i∈ 'M , let ijijiijij wxbp /deg '=

Let 'i ∈ 'M be the period with the smallest value of ijdeg

Let 'U =
'

]}1,1{[
Mi

ii
∈

+−

Let 'F = (M \ 'U) ∪ { 'i }

For each i∈ 'F , fix ijx to zero in the LP formulation (1) – (3).

Step 4 For each j∈J

Let 'M = {i∈M | '
ijx > 0}

Let 'U =
'

]}1,1{[
Mi

ii
∈

+−

Let 'F = (M \ 'U)

For each i∈ 'F , fix ijx to zero in the LP formulation (1) – (3).

Step 5 Solve the resulting LP formulation and repeat from Step 1.
Step 6 Apply the solution improvement heuristic described in section 3

below.

2.4 The Solution Improvement Heuristic

Upon completion of the LP-based heuristic, a second heuristic is applied. The second
heuristic searches for periods with slack, and seeks to find tasks completely allocated
to immediately neighbouring periods that could be beneficially split by allocating all
or part of the task to the machine with slack capacity. If more than one such period-

18 A.P. French and J.M. Wilson

task combination is found, then the combination leading to the greatest increase in the
objective is chosen. The process is repeated until no further improvement is possible.

3 Computational Results

3.1 Initial Testing

The heuristic was now tested on two types of problem instances. Both sets are
discussed in Wilson (2002). The instances are available at http://www-
staff.lboro.ac.uk/~msjmw/

Good results, in terms of speed and quality, are obtained. For the smallest problems
solutions were close to optimal and obtained rapidly. In contrast, using XPRESSMP to
obtain the optimal solution requires on average 1000’s of branch and bound nodes.
For the larger problems, where the optimal solution is unknown, solutions are
obtained rapidly in at worst 5.3 CPU seconds and are close to an upper bound value.
When the heuristic solution results in a ratio measure of 1.000 when compared to an
upper bound that is not guaranteed to be optimal, it is likely that the solution found is
optimal.

A second set of problems with correlation between ijp and ijw was generated.

These problems are in the style of the Type E generator described in Laguna et al.
(1995). The generator is modified slightly because the objective function (1) is
maximise. Such problems are designed to provide a harder test for the heuristic
because of the correlation effects.

The second set of problems turned out not to be any harder for the heuristic than
the first set. Again solutions were obtained rapidly and were near-optimal. Both sets
of results significantly improved on those in Wilson (2002), which used the same
problem instances, where run times were longer and optimality levels poorer.

3.2 Further Testing

In order to test the algorithm further some standard GAP instances were used to give
some comparability. Three sets of 15 problems discussed in Diaz and Fernandez
(2001) and Yagiura et al. (2004a) were used. The larger instances of these problems
are known to be hard to solve as GAPs. These problems were solved as if they were
(minimization) GAPS2 problems. For some of these problems the optimal solution is
known and for all of them an upper and lower bound are known (see Wilson, 2002).
Table 1 shows the results of these tests on one of the sets. As can be seen from the
last column of the table the heuristic is successful in obtaining solutions that are close
to optimal. Solutions are, on average, within 0.2% of optimality. It is also apparent
that for each problem instance, the differences between the best known GAPS2
solution, the value of the LP relaxation, and the best known value of the GAP, are
small. Overall it is promising that the heuristic is able to obtain good quality solutions
to GAPS2 rapidly, within 1.5 minutes for even the hardest of the larger problem
instances, outperforming a commercial branch and bound code which is less suited to
this type of combinatorial problem.

An LP-Based Hybrid Heuristic Procedure for the GAPS2 19

Table 1. Yagiura Type E Problems (minimization)

 XPRESSMP Heuristic ratio

Problem DFYIG IP Bound Secs Nodes Sol Secs Sol/IP

E05100 12681 12642.73 12642.73 0 27 12646.63 0.3 1.000

E05200 24930 24924.82 24924.82 0 68 24927.64 0.5 1.000

E10100 11577 11551.09 11551.09 42 16013 11573.15 0.4 1.002

E10200 23307 23295.85 23295.85 25 5467 23310.26 0.6 1.001

E10400 45746 45740.76 45740.76 443 43677 45748.52 1.1 1.000

E15900 102422 102423.1* 102416.79 1679 102429.90 4.0 1.000

E20100 8436 8411.95* 8363.32 1072 8532.86 0.8 1.020

E20200 22379 22376.66* 22358.2 1413 22395.84 1.3 1.002

E20400 44882 44884.13* 44862.21 1190 44912.78 2.3 1.001

E201600 180647 180658.6* 180640.3 1226 180646.40 10.7 1.000

E30900 100438 100477.65* 100413.5 1460 100468.30 10.3 1.001

E40400 44579 44756.27* 44523.71 1536 44634.09 6.6 1.002

E401600 178311 178537.5* 178282.6 1350 178315.30 28.3 1.000

E60900 100177 100995.6* 100103.3 1287 100338.20 28.9 1.002

E801600 176856 ** 176781 1086 177006.80 91.84 1.001

 mean 1.002

DFYIG = best heuristic solution to GAP from Diaz and Fernandez (2001) or Yagiura,

 Ibaraki and Glover (2004a).

• = non-optimal IP solution, secs refer to time taken to reach it.

• ** = no IP solution found, bound given is LP relaxation. For this instance

denominator of Sol/IP replaced by Bound.

4 Conclusions

By adapting a heuristic for GAP to the needs of GAPS2 this paper has shown how it
is possible to solve fairly large instances of GAPS2 rapidly and with a consistently
high degree of solution quality. When the heuristic was applied to sets of relatively
difficult problems from the literature, near-optimal solutions were obtained rapidly
with in most cases solutions being within 0.2% of a lower bound.

20 A.P. French and J.M. Wilson

The GAPS2 heuristic developed can in turn be adapted to provide a method to
solve GAP where the problem instances are tightly constrained and the original
heuristic of Trick (1992) would not be satisfactory.

References

1. Beale, E.M.L. and Forrest, J.J.H. Global optimization using special ordered sets. Math.
Programming 10 (1976) 52-69.

2. Beale, E.M.L. and Tomlin, J.A. Special facilities in a general mathematical programming
system for non-convex problems using ordered sets of variables. In: OR 69: Proc. 5th Int.
Conf. Oper. Res., Venice 1969 (edited by J. Lawrence) Tavistock Publications, London
(1970) pp 447-454.

3. Cattrysse, S., Degraeve, Z. and Tistaert, J. Solving the generalized assignment problem
using polyhedral results. Eur. J. Oper. Res. 108 (1998) 618-628.

4. de Farias Jr, I.R., Johnson, E.L. and Nemhauser, G.L. A generalized assigment problem
with special odered sets : a polyhedral approach. Math. Programming 89 (2000) 187-203.

5. Diaz, J.A. and Fernandez, E. A tabu search heuristic for the generalized assignment
problem. Eur. J. Oper. Res. 132 (2001) 22-38.

6. Haddadi, S. and Ouzia, H. Effective algorithm for the generalized assignment problem.
Eur. J. Oper. Res. 153 (2004) 184-190.

7. Higgins, A.J. A dynamic tabu search for large-scale generalised assignment problems.
Comput. Oper. Res. 28 (2001) 1039-1048.

8. Laguna, M., Kelly, J., Gonzalez-Velarde, J. and Glover, F. Tabu search for the multilevel
generalized assignment problem. Eur. J. Oper. Res. 82, (1995) 176-189.

9. Nauss, R.M. Solving the generalized assignment problem: An optimizing and heuristic
approach. INFORMS J. Comp. 15 (2003) 249-266.

10. Savelsbergh, M. A branch-and-price algorithm for the generalized assignment problem.
Oper. Res. 45 (1997) 831-841.

11. Trick, M.A. A linear relaxation heuristic for the generalised assignment problem. Naval
Res. Logist. 39 (1992) 137-151.

12. Wilson, J.M. An algorithm for the generalized assignment problem with special ordered
sets. Accepted by J. Heuristics. (2002)

13. XPRESSMP, Dash Optimization, Blisworth, Northamptonshire, England.
14. Yagiura, M, Ibaraki,T. and Glover, F. A path relinking approach for the generalized

assignment problem. Proc. of the Int. Symp. on Scheduling, Japan, June 4-6, (2002) 105-
108.

15. Yagiura, M, Ibaraki,T. and Glover, F. An ejection chain approach for the generalized
assignment problem. INFORMS J Computing 16 (2004a) 133-151.

16. Yagiura, M, Iwasaki, S, Ibaraki, T, & Glover, F. A very large-scale neighbourhood search
algorithm for the multi-resource generalised assignment problem. Discrete Optimization
1 (2004b) 87-98.

Parametrized Greedy Heuristics in Theory
and Practice

Armin Fügenschuh

Darmstadt University of Technology,
Schlossgartenstr. 7, 64289 Darmstadt, Germany
fuegenschuh@mathematik.tu-darmstadt.de

Abstract. A parametrized greedy heuristic (pgreedy) is a hybridization
of a classical greedy construction heuristic with a parametrized scoring
function and improving hit-and-run, a concept from the field of Global
Optimization for automated parameter selection. In this article we intro-
duce this new metaheuristic concept and apply it to a real-world planning
problem: the integrated coordination of school starting times and public
transport in rural areas.

1 Parametrized Greedy Heuristics

Greedy-type heuristics are used in many special-purpose optimization software
packages, where a good feasible solution to a given instance of some (combina-
torial) problem is required after a very short amount of time (typically, a few
seconds). They construct feasible solutions from scratch by step-by-step insert-
ing always the best immediate, or local, solution while finding an answer to the
given problem instance. To obtain in fact good solutions, the crucial point within
every greedy algorithm is having a proper criterion that selects these local so-
lutions and thus is responsible for the search direction. For some optimization
problems greedy algorithms are able to find the globally optimal solution. For
example, Prim’s or Kruskal’s algorithms actually are greedy algorithms which
find a minimum spanning tree in a given graph. On the other hand, there is no
known greedy algorithm that finds a minimum Hamiltonian path, i.e., a solution
to the traveling salesman problem (TSP).

Consider an optimization problem in the general form

zopt = min{c(x) : x ∈ S}, (1)

where S ⊂ Zn is a non-empty, bounded (hence finite) set of feasible solutions and
c : S → Q is an objective function. Let N := N0 := {1, . . . , n}. A scoring function
is a mapping s : N ×Z → Z∪{∞} which yields a score s(i, v) for the assignment
of value v ∈ Z to variable xi with index i ∈ N . Assume that it is computationally
easy to identify some (i, v) ∈ N ×Z that minimizes the scoring function. A greedy
heuristic is defined as a procedure that selects in the k-th step an index i ∈ Nk

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 21–31, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

22 A. Fügenschuh

and a value v ∈ Z with (i, v) = argmin{s(j, w) : j ∈ Nk, w ∈ Z} and sets
xi := v. Then k is increased by one and Nk := Nk−1\{i}. The greedy algorithm
terminates after at most n steps when there is no free (unassigned) variable left,
i.e., Nk = ∅. As one can imagine the actual selection of a proper scoring function
s is essential for constructing a good greedy heuristic. The algorithm’s output
is a vector x called solution. A solution x is either feasible if x ∈ S, or infeasible
otherwise. A feasible solution is called optimal if for every other feasible solution
y we have c(x) ≤ c(y). If a greedy heuristic always terminates with a feasible
solution it is called reliable. If a reliable greedy heuristic always produces optimal
solutions it is called exact.

In case of the TSP a simple greedy heuristic is the nearest-neighbor heuristic
(NN) that works as follows. Given is a complete graph G = (V, A) with non-
negative arc weights cvw ∈ Q+. The salesman starts at an arbitrary node v0
and then visits the node nearest to the starting node. That is, a node v1 with
v1 = argmin{sv0w : (v0, w) ∈ A} is selected, where the scoring function s is
defined as

svw := cvw, ∀ (v, w) ∈ A. (2)

From there the salesman visits the nearest node v2 that was not visited so
far. In general, in the k-th step of the heuristic we seek

vk = argmin{svk−1w : w ∈ V, (vk−1, w) ∈ Ak}, (3)

with Ak := Ak−1\{(vk−1, v0), . . . , (vk−1, vk−2)} for all k ≥ 2 and A1 := A,
and insert it into the tour. These steps are iteratively repeated until all nodes
are visited and the salesman returns to the start node v0. This maybe is the
first heuristic that almost everyone comes up with. It is probably close to a
practitioner’s approach. However, the solutions found by this heuristic sometimes
are of poor quality. The reason is, as one can see in Figure 1 (left; tour length 677
units) below, that some nodes are “forgotten” during the course of the algorithm.
They have to be inserted in later steps towards the end at relatively high costs.

A parametrized scoring function with p parameters λ ∈ Qp is a mapping
s : N × Z × Qp → Q with argument (i, v, λ). In the sequel we restrict our
discussion to the case of scoring functions that are linear in the parameters, i.e.,
for all i ∈ N, v ∈ Z, λ, μ ∈ Qp, and t, u ∈ Q we have s(i, v, t · λ + u · μ) =
t · s(i, v, λ) + u · s(i, v, μ). A greedy heuristic that makes use of such a scoring
function is hence called a parametrized greedy heuristic or pgreedy, for short. The
local selection of variables and values and hence the entire solution found by the
pgreedy heuristic depends on the actual choice of λ ∈ Qp. We write x(λ) for the
solution found when the pgreedy algorithm is called with parameter λ, and z(λ)
for the corresponding objective function value, i.e., z(λ) = c(x(λ)). We are now
faced with the problem to find a vector λ with z(λ) ≤ z(μ) for all μ ∈ Qp and
hence to search for

zpgreedy = inf{z(λ) : λ ∈ Qp}. (4)

If the domain for the parameters is bounded – and we show in Corollary 1
below that this can be assumed without loss of generality – then in principle the

Parametrized Greedy Heuristics in Theory and Practice 23

optimal parameter vector λ can be found by sampling over a regular, sufficiently
dense grid. For each λ the pgreedy heuristic has to be called and the best λ
(i.e., the λ with the lowest objective function value z(λ)) is kept. However, in
practice this approach turns out to be inefficient, even for a relative few number
of parameters. Another idea is to select candidate λ parameters randomly, which
also leads to a high number of runs.

Instead of those we use improving hit-and-run (IHR for short), an algorithm
introduced by Zabinsky et al. [7] (see also [6]) to solve general global optimiza-
tion problem. IHR is a randomized (Monte-Carlo) algorithm that automatically
selects parameters which lead to good, possibly optimal solutions when used in
a pgreedy heuristic. In a hybrid algorithm of pgreedy and IHR, a combination
of a parametrized greedy algorithm and improving hit-and-run, IHR is used to
compute the weights λ that take control of the parametrized scoring function
and calls the pgreedy algorithm as a black-box to obtain a new objective func-
tion value. The basic idea behind improving hit-and-run is to use hit-and-run
to generate candidate points randomly and accept only those that are an im-
provement with respect to the objective function. For a given objective function
z : B → Q, defined on a bounded subset B ⊂ Qp the IHR algorithm works as
follows: We start with an initial λ0 ∈ B, and set k := 0. The following steps are
now repeated until a stopping criterion is met, for example, if the number of iter-
ations k reaches a certain limit. Generate a random direction vector dk uniformly
distributed on the boundary of the unit hypersphere Sp := {λ ∈ Qp : ‖λ‖2 = 1}.
Generate a candidate point wk+1 := λk + t ·dk, where t is generated by sampling
uniformly over the line set Lk := {λ ∈ B : λ = λk + t · dk, t ∈ Q+}. If the can-
didate point is improving, i.e., z(wk+1) < z(λk), we set λk+1 := wk, otherwise
λk+1 := λk. Finally, increase k by 1.

However, the domain of parameters for the objective function has to be
bounded to apply IHR. The subsequent Theorem 1 and the derived Corollary 1
are crucial to restrict the unbounded domain for the λ parameters to some
bounded subset B ⊂ Qp. Without the assertion of the Corollary, IHR would not
be applicable.

Theorem 1. Let λ, λ′ ∈ Qp. If there is a positive scalar t ∈ Q+ such that
λ′ = t · λ then x(λ) = x(λ′) and hence z(λ) = z(λ′).

Proof. Consider an arbitrary step k of the pgreedy heuristic with parameter λ.
Let (i, v) := argmin{s(j, w, λ) : j ∈ N, w ∈ Q} be the selected index and value
in this step. That means, s(i, v, λ) ≤ s(j, w, λ) for all j ∈ N, w ∈ Q. It follows
that t · s(i, v, λ) ≤ t · s(j, w, λ). Since s(i, v, ·) is linear, we get s(i, v, t · λ) ≤
s(j, w, t · λ) and hence s(i, j, λ′) ≤ s(j, w, λ′) for all j ∈ N, w ∈ Q. Therefore
(i, v) = argmin{s(j, w, λ′) : j ∈ N, w ∈ Q}. Since k was arbitrarily chosen both
heuristics select the same local best node in every step. Thus the constructed
solutions and their objective function values are the same.

Corollary 1. Let ‖ · ‖ be an arbitrary norm. For every solution x(λ) with λ ∈
Qp\{0} there is a λ′ ∈ Qp with ‖λ′‖ = 1 such that x(λ) = x(λ′).

24 A. Fügenschuh

Proof. Let λ ∈ Qp, λ = 0. If already ‖λ‖ = 1 then we have nothing to do
anymore. Otherwise set t := 1/‖λ‖ and λ′ := t · λ. Then ‖λ′‖ = 1 and x(λ) =
x(λ′) by Theorem 1.

In particular, we have shown that

zpgreedy = inf{z(λ) : λ ∈ Qp} = min{z(λ) : ‖λ‖ = 1}. (5)

In particular this means that the search for parameters λ can be restricted
to the unit hypersphere (instead the whole Qp), which considerably speeds up
computations.

We now continue the TSP example and extend the nearest neighborhood
heuristic to a parametrized greedy heuristic. The crucial point for pgreedy is
that more than a single criterion is needed. Finding those additional criteria is in
general more of an art than science. For example, in the k-th step of the nearest-
neighbor heuristic (with 1 ≤ k ≤ |V |) one can consider the “way back to the start
node”, i.e., cvkv0 as an additional term in the scoring function. Hence we obtain

svw(λ1, λ2) := λ1 · cvw + λ2 · cwv0 , ∀ (v, w) ∈ A, (6)

as parametrized scoring function, where λ1 and λ2 are some scalar parameters.
After a few iterations of the IHR algorithm a better solution for this TSP in-
stance is obtained with parameters λ1 := 0.6 and λ2 := −0.4 in the scoring
function (6). This solution is shown in Figure 1 (middle; tour length 592 units).

However, the generated solution still can be improved. This is done by a final
local search step. A local search strategy for TSP is the so-called k-opt. A k-opt
is an exchange of k ∈ Z, k ≥ 2 arcs of the solution. A recombination of this kind
is accepted if the overall tour length is reduced, and rejected otherwise. k-opt
steps are sequentially applied until no improvement is found anymore. Figure 1
(right; tour length 525 units) shows the solution that is found for k = 2.

Fig. 1. Greedy (677), pgreedy (592), and pgreedy with local search (525)

These three components, a greedy heuristic using a parametrized scoring
function, a meta-algorithm in which this greedy heuristic is embedded to find the
“right” parameters, and a final local search procedure, are the main ingredients
for a successful pgreedy heuristic.

Parametrized Greedy Heuristics in Theory and Practice 25

2 A Real-World Planning Problem

Originally pgreedy was developed to aid human planners solving the integrated
planning problem of coordinating bus and school starting times and bus sched-
ules (the project acronym is IKOSANA, an abbreviation of the German
“Integrierte Koordinierung von Schulanfangszeiten und des Nahverkehrs-
Angebots”). This problem occurs frequently in every county in Germany, and
with its solution large amounts of money can be saved.

Let V be the set of all passenger trips in the given county. A trip t ∈ V is
a sequence of bus stops, each having an arrival and a departure time assigned
to. The time difference δtrip

t between the departure at the first and the arrival
at the last bus stop is called the service duration. (All time-related parameters
and variables in the model are integral with the unit “minute”.) For every trip
t ∈ V we introduce an integer variable αt ∈ Z+ representing its planned starting
time, i.e., the departure of a bus at the first bus stop. A time window αt, αt is
given, in which the planned trip starting time must be:

αt ≤ αt ≤ αt. (7)

The trips are served by buses which start and end their services at a depot.
In principle, every trip may be served by a new bus from the depot. The trip
without passengers from the depot to the first bus stop of trip t is called pull-
out trip. When the bus arrives at the last bus stop of passenger trip t, it is
either sent on the pull-in trip, i.e., back to the depot, or it is re-used to serve
another passenger trip. The duration of the pull-out and pull-in trips is denoted
by δout

t , δin
t , respectively.

Instead of sending the bus back to the depot after having served a trip it is
of course more sensible to re-use the bus to serve other trips, as long as this is
possible. Thus we seek such a connection of trips. Let the set A ⊂ V ×V contain
all pairs of trips (t1, t2) that can in principle be connected. The intermediate
trip from the last bus stop of trip t1 to the first bus stop of trip t2, where no
passengers are transported, is called a shift or a deadhead trip, its duration is
δshift
t1t2 . The connection of a pull-out trip, passenger and deadhead trips and a final

pull-in trip which are to be served by one and the same bus is called a block or
schedule. For every trip t ∈ V the decision variables vt, wt ∈ {0, 1} indicate if
trip t is the first or the last trip in some block, respectively. For every pair of
trips (t1, t2) ∈ A the variable xt1t2 ∈ {0, 1} indicates if t1 and t2 are in sequence
in some block, that is, the same bus serves trip t2 directly after trip t1.

Each trip is served by exactly one bus. That means, trip t2 ∈ V either a
unique predecessor or it is the first one in some block:∑

t1:(t1,t2)∈A
xt1t2 + vt2 = 1. (8)

Moreover, every trip t1 ∈ V either has a unique successor or it is the last one
in some block: ∑

t2:(t1,t2)∈A
xt1t2 + wt1 = 1. (9)

26 A. Fügenschuh

If trips (t1, t2) ∈ A are connected, then trip t2 can only start after the bus
has finished trip t1, shifted from the end of t1 to the start of t2, and has waited a
specified time to absorb possible delays. Additional waiting is permitted within
certain limits if the bus arrives before the start of t2. Using a sufficiently big
value for M , these constraints can be formulated as linear inequalities:

αt1 + δtrip
t1 + δshift

t1t2 − M · (1 − xt1t2) ≤ αt2 , (10)

where M is a large but finite number.
Let S be the set of all schools in the county under consideration. It is allowed

to change this starting time within some time window (by law it is allowed that
schools start between 7:30 and 8:30 a.m.). Moreover the school starting time is
required to be in discrete time slots of 5 minutes (7:30, 7:35, 7:40, etc.). For
every school s ∈ S a time window τs, τs is given and we introduce an integer
variable τs ∈ Z+ with

τs ≤ 5 · τs ≤ τs. (11)
Thus the planned school starting time of s is given by 5 · τs.
The set P ⊂ S × V consists of pairs (s, t), where trip t transports pupils to

a bus stop of school s. In this case we say, t is a school trip for s. The time
difference between the departure at the first bus stop of t and the arrival at the
bus stop of s is δschool

st . There is another time window for the pupils ωschool
st , ωschool

st ,
specifying the minimal and maximal waiting time relative to the school starting
time. The lower bound ωschool

st is chosen according to the walking time from the
bus stop where the pupils are dropped off, whereas the upper bound ωschool

st is
due to law restrictions. A typical time window is 5 – 45 minutes. For every
(s, t) ∈ P the starting times of trip t and school s have to be chosen such that
the waiting time restrictions for the pupils at school s are met. Thus, we add
the following inequalities to the model in order to synchronize the start of bus
trips and schools:

αt + δschool
st + ωschool

st ≤ 5 · τs,
αt + δschool

st + ωschool
st ≥ 5 · τs.

(12)

The optimization basically has two goals: Finding a minimum number of
buses to serve all trips, and deploying these buses in the most efficient way, that
is, minimize the sum of all deadhead trips (including pull-out, pull-in trips). As
objective function we thus have

M1 ·
∑
t∈V

vt + M2 ·

⎛
⎝∑

t∈V
δout
t · vt +

∑
(t1,t2)∈A

δshift
t1t2 · xt1t2 +

∑
t∈V

δin
t · wt

⎞
⎠ , (13)

where again M is a sufficiently big value such that the reduction of the fleet size
dominates over the length of the deadhead trips.

Summing up we want to solve the following integer optimization problem
(also called IKOSANA in the sequel):

min (13)
subject to (7), . . . , (12)

v, w ∈ {0, 1}|V|, x ∈ {0, 1}|A|, τ ∈ Z|S|, α ∈ Z|V|.
(14)

Parametrized Greedy Heuristics in Theory and Practice 27

3 Solving IKOSANA with PGreedy

From a theoretical point of view, we remark that IKOSANA is a generalization
of the vehicle routing problem with time windows (VRPTW), a problem known
to be theoretically and practically difficult (for a proof of the NP -completeness
see Savelsbergh [4], for a general introduction to vehicle routing see Toth and
Vigo [5]). The new aspect in addition to VRPTW are the coupling conditions
on the starting time windows given by inequalities (12). (We suggest the term
vehicle routing problem with coupled time windows (VRPCTW) for this new
problem class.) Hence from a theoretical point of view, solving IKOSANA to
optimality is NP -hard, since checking feasibility with a fixed number of vehicles
is NP -complete. Thus we cannot expect a polynomial algorithm for its solution
unless P = NP . In order to obtain good feasible solutions we now describe
an application of the parametrized greedy heuristic to IKOSANA. The entire
solution process is split into two stages. In stage one schedules of the buses are
computed such that preferably few buses are in use and the total length of all
deadhead-trips is minimal. At this stage, it is not necessary to compute starting
times for the schools and the trips. It only has to be assured that the schedules
of the buses are feasible in such way that feasible school starting times can be
computed afterwards. Their actual computation is then done in stage two where
the schedules from stage one are taken as fixed input values.

3.1 Starting Time Propagation

The most important subroutine within the heuristic is a constraint propagation
algorithm for bounds strengthening. Note that the subsystem of the IKOSANA
model (14) consisting of inequalities (7), (10) for those inequalities with xt1t2 = 1,
(11), and (12) is a monotone IP2, i.e., an integer program where each inequal-
ities has at most two non-zero coefficients (IP2) and, if there are exactly two
non-zeros, one is positive and the other is negative (monotone). Finding feasible
solutions of a monotone IP2 is also an NP -hard problem, since it contains si-
multaneous Diophantine approximation as a special case (for the details we refer
to Lagarias [2]). For the construction of feasible solutions of these systems, or
to show that no such solution exists, Bar-Yehuda and Rawitz [1] proposed the
following pseudo-polynomial algorithm.

Given are the integer variables yi ∈ Z for i = 1, . . . , n (which now represent
the α and τ variables in the IKOSANA model) with bounds li ≤ yi ≤ ui and the
monotone inequality system akyik

+bkyjk
≤ ck for k = 1, . . . , m, with ak ·bk < 0.

The main idea of the algorithm is to use constraint propagation to find the
impact of constraint k and the bounds lik

, uik
on the bounds ljk

, ujk
. If ak > 0

and bk < 0 we obtain a new lower bound on yjk
by setting

ljk
:= max

{
ljk

,

⌈
ck − aklik

bk

⌉}
. (15)

Otherwise, if ak < 0 and bk > 0, a new upper bound on yjk
is given by:

ujk
:= min

{
ujk

,

⌊
ck − akuik

bk

⌋}
. (16)

28 A. Fügenschuh

(For the impact of the bounds ljk
, ujk

on the bounds lik
, uik

similar formulas
can be derived.) These two propagation steps (15) and (16) are now iteratively
repeated for all variables, until no bound is improved any more. If ujk

< ljk
oc-

curs after the update then the subsystem is infeasible. Bar-Yehuda and Rawitz
showed that the entire propagation can be implemented such that its time com-
plexity is O(mU), with U := max{ui − li : i = 1, . . . , n}.

This bounds strengthening algorithm is used to evaluate the influence of one
starting time window (of either a trip or a school) on all other time windows.
Thus we call it starting time propagation in the sequel. Starting time propagation
is used in the beginning to check whether the given instance is feasible at all.
It is then used after every construction step in the pgreedy heuristic to check
whether a connection of trips is feasible and to assure that starting times of
schools and trips can be computed in stage two of the heuristic.

3.2 Constructing the Schedules

The construction of feasible schedules for all vehicles is the first stage of our
heuristic, after the instance is checked to be feasible. Consider the graph (V , A).
In the k-th step of the heuristic a local-best deadhead-trip from A is selected.
Before we remove those arcs from A that would lead to infeasibilities when being
chosen. An arc (t1, t2) ∈ A is infeasible in view of inequalities (10) if the vehicle
arrives at the first bus stop of t2 after the latest possible start of t2. Another
kind of infeasibility occurs in view of inequalities (8) and (9). If some xt1t2 is
already fixed to its upper bound 1 then all arcs (t, t2), (t1, t) ∈ A can also be
removed from A since every tour must have a unique predecessor and successor,
respectively. The same applies for trips that are already selected as first or last
trip in some schedule. In order to remove all those arcs that would make the
solution infeasible when being selected we define Ak ⊆ A as

Ak := Ak−1\{ {(t1, t2) ∈ A : αt1 + δtrip
t1 + δshift

t1t2 > αt2}
∪ {(t1, t2) ∈ A : ∃t ∈ V , xt1t = 1}
∪ {(t1, t2) ∈ A : ∃t ∈ V , xtt2 = 1}
∪ {(t1, t2) ∈ A : wt1 = 1}
∪ {(t1, t2) ∈ A : vt2 = 1} }

(17)

for all k ≥ 1 and A0 := A. We set xt1t2 := 0 for all removed arcs (t1, t2) ∈
Ak−1\Ak.

For the scoring function we discuss two alternatives. Similar to the introduc-
tory nearest neighbor TSP example we take

st1t2 := δshift
t1t2 , (18)

as scoring function. Hence an arc (t1, t2) ∈ Ak with minimal distance δshift
t1t2 is

selected, i.e.,
(t1, t2) = argmin{sij : (i, j) ∈ Ak}. (19)

However, this scoring function (18) yields very poor solutions with a high number
of vehicles, because it is by definition “blind” for everything that has to do

Parametrized Greedy Heuristics in Theory and Practice 29

with time windows. In IKOSANA the connection of two trips t1 and t2 does
affect some or all of the time windows. Vice versa, the time windows affect
the set of deadhead trips that remain to be selected in the next round of the
heuristic. Thus, we seek a scoring function that does not only take into account
the time for the deadhead trip, but also takes care of the necessary changes in
the corresponding time windows. If the time windows are narrowed too early in
the course of the algorithms, the number of deployed buses quickly increases,
because no “flexibility” remains. Thus, we introduce a scoring function that
prefers those connections that do not (or at least not too much) change time
windows of other trips or schools. For this, we define

st1t2(λ) := λ1 · δshift
t1t2

+ λ2 · |αt1 + δtrip
t1 + δshift

t1t2 − αt2 |
+ λ3 · |αt1 + δtrip

t1 + δshift
t1t2 − αt2 |

+ λ4 · |αt1 + δtrip
t1 + δshift

t1t2 − αt2 |
+ λ5 · |αt1 + δtrip

t1 + δshift
t1t2 − αt2 |

(20)

with λ = (λ1, . . . , λ5) ∈ Q5
+. The search of a good set of parameters λ ∈ Q5

+
is handed over to improving hit-and-run. Since (20) is linear in the parameters
Corollary 1 applies to our situation. Even more, in our scoring function the λ
parameters are non-negative. Thus we can restrict the domain of parameters to
the standard simplex {λ ∈ Q5

+ : λ1 + . . . + λ5 = 1}.
For the arc (t1, t2) found in (19) we now set xt1t2 := 1. Due to the connection

of trip t1 with t2 the starting time windows of these two trips might change. This
of course propagates onto all other starting time windows of trips and schools.
To evaluate the effect of the connection we call the starting time propagation
again.

The above steps are repeated iteratively until Ak = ∅ for some k. This is
equivalent to the fact that all binary variables x are fixed to their bounds, 0 or
1. Since v and w are slack variables their values are automatically determined
by the x variables. In an intermediate step, we improve the solution by a 2-opt
local search step. Thus, we end up with a schedule for all buses and strengthened
bounds on the time variables, which is now input for the second stage of the
optimization, the starting time computation.

3.3 Assigning the Starting Times

The goal of stage two is the computation of school and trip starting times, given
the bus schedules from stage one. During the computations in stage one, the
time windows have been significantly narrowed. If a time window shrinks to a
single point, then the corresponding variable, αt or τs, can be fixed to this value.
However, for the majority of all time windows, there is still some flexibility.

We start with the schools and distinguish three cases. If the former school
starting time τ̂s of school s ∈ S is below the lower bound τs, we fix the school
starting time to the lower bound, that is, we let τs = 1

5τ s, and the school s starts
at τs. If the former school starting of school s is above the upper bound τ s, we
fix the school starting time to the upper bound, that is, we let τs = 1

5τ s, and

30 A. Fügenschuh

the school s will start at τ s. Finally, if the former school starting of school s is
between the upper and the lower bound, τ s ≤ τ̂s ≤ τ s, then this starting time is
kept, i.e., we let τs = 1

5 τ̂s and school s is going to start at τ̂s. The idea behind
this settings is to keep the new school starting times as close as possible to the
former starting times that the pupils and teachers are already custom to. After
each fixing of a school starting time, another starting time propagation step has
to be carried out to evaluate the impact of the respective setting for other school
and trip starting times.

After having settled the school starting times, we assign starting times to
the trips in the very same fashion. Thus when the heuristic terminates after the
second stage a feasible solution x, v, w, τ, α to the problem is returned.

4 Input Data and Computational Results

The IKOSANA pgreedy heuristic was implemented in C++ on a 2.6GHz Intel-
Pentium IV computer running debian Linux and tested using five real-world
data sets. County ct 1 is located in the state Mecklenburg-Western Pomerania,
counties ct 2, ct 3, and ct 5 are all in North Rhine-Westphalia, and county
ct 4 is in Saxony-Anhalt. The sizes of sets in instances ct 1 to ct 5 are shown
in Table 1.

Table 1. Size of the input data sets

instance |V| |A| |S| |P|
ct 1 247 60,762 43 195
ct 2 490 239,610 102 574
ct 3 191 36,290 82 294
ct 4 134 17,822 37 201
ct 5 404 162,812 84 579

Table 2. Computational results

instance current g time pg-rand pg-ihr iter. CPlex
ct 1 82.0423 81.0358 6 65.0953 65.0882 2,300 66.0553
ct 2 226.0711 227.0556 327 173.2122 175.1595 120 187.1361
ct 3 90.0488 83.0410 11 66.1225 66.1106 2,500 70.0864
ct 4 43.0093 49.0138 1 38.0407 38.0268 7,500 38.0198
ct 5 176.0725 180.0633 37 135.1790 134.1704 900 140.1084

In Table 2 we summarize our computational results. In the first column is the
number of currently used buses and the length of all deadhead, pull-in and pull-
out trips. (Since buses are more expensive than deadhead trips we use M1 := 1
and M2 := 1

10000 . For example, in county ct 1 there are currently 82 buses that
need 423 minutes for all kind of deadhead trips.) The solutions found when using

Parametrized Greedy Heuristics in Theory and Practice 31

the greedy scoring function (18) are shown in column “g”. It turns out that the
nearest neighbor insertion is a bad strategy: In all but one case the number of
buses is even higher after the optimization than before. The time for a single call
of the greedy heuristic is given in the left column “time”. The computation time
mainly depends on the number of deadhead trips within the respective instance,
and ranges from less than a second to a few minutes. In column “pg-rand”
we show the results when sampling parameters randomly for the parametrized
scoring function (20). In column “pg-ihr” improving hit-and-run was applied
instead of pure random sampling. In all runs we limited the computation time
to 3, 600 seconds, which gives a different number of iterations (calls of the greedy
heuristic) for each instance (see column “iter”). Compared to random parameter
selection it turns out that in all but one case IHR leads to better results after
the same number of iterations. We also solved (14) using a commercial state-of-
the-art MIP solver [3], see column “CPlex”. It turns out that in all but one case
both pgreedy heuristics (with random and IHR parameter selection strategy)
found better feasible solutions within the given time limit (3, 600 seconds).

Compared to the currently used number of buses we are able to detect savings
of 15−30%. The reduction of a single bus yields savings of 35,000 Euro per year
for the county’s tax payers. In practice the integrated coordination of school
starting times is just at the very beginning. One can safely assume that in most
counties in Germany the school starting times are not (or at least not sufficiently)
coordinated with public transport. Extrapolating this savings to all 323 counties
in Germany, we come up with savings of 200 – 300 Mio. Euro every year. So,
what are we waiting for?

References

1. Bar-Yehuda R., Rawitz D. (2001), Efficient algorithms for integer programs with
two variables per constraint. Algorithmica 29 (4), 595 – 609.

2. Lagarias J.C (1985), The computational complexity of simultaneous diophantine
approximation problems. SIAM Journal on Computing 14, 196 – 209.

3. ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451,
USA. Information available at URL http://www.cplex.com.

4. Savelsbergh M. (1986), Local Search for Routing Problems with Time Windows.
Annals of Operations Research 4, 285 – 305.

5. Toth P., Vigo D. (2002), The Vehicle Routing Problem. SIAM Monographs on Dis-
crete Mathematics and Applications. SIAM, Philadelphia.

6. Zabinsky Z.B. (2003), Stochastic Adaptive Search for Global Optimization. Noncon-
vex Optimization and its Applications. Kluwer Academic Publishers, Boston.

7. Zabinsky Z.B., Smith R.L., McDonald J.F., Romeijn H.E., Kaufman D.E. (1993),
Improving Hit-and-Run for Global Optimization. Journal of Global Optimization 3,
171 – 192.

A Taxonomy of Cooperative Search Algorithms

Mohammed El-Abd and Mohamed Kamel

Dept. of Electrical and Computer Engineering, University of Waterloo,
Waterloo, N2L 3G1, Canada

{mhelabd, mkamel}@pami.uwaterloo.ca

Abstract. A lot of heuristic approaches have been explored in the last
two decades in order to tackle large size optimization problems. These
areas include parallel meta-heuristics, hybrid meta-heuristic, and cooper-
ative search algorithms. Different taxonomies have been proposed in the
literature for parallel and hybrid meta-heuristics. In these taxonomies,
one can realize that cooperative search algorithms lie somewhere in be-
tween. This paper looks at cooperative search algorithms as a stand alone
area. Two different taxonomies of cooperative search algorithm are pro-
posed based on two different criteria. Different implementations in this
area are reported and classified using these taxonomies.

1 Introduction

Search techniques have been widely used to solve many optimization problems
of both theoretical and practical importance. They can be divided into com-
plete (exact) and approximate (heuristic) algorithms. Complete search algo-
rithms such as branch and bound or dynamic programming guarantee to find
an optimal solution for a finite sized problem in bounded time. However, as the
size of the problem gets larger, the time needed by the complete algorithms may
increase exponentially. On the other hand, approximate search algorithms find
a good (non-optimal) solution in less amount of time.

Another approach that was taken to solve optimization problems was the
introduction of hybrid algorithms. A hybrid algorithm is a combination of com-
plete or approximate algorithms (or both) used to solve the problem in hand.
The interest among researchers in this field has risen in the past years since
many of the best results obtained for many optimization problems where found
by hybrid algorithms.

As the size the optimization problems that need to be solved gets larger,
researchers have tried to find a way to address these problems efficiently. The
solution to this problem was the application of parallel computation. Many par-
allel implementations of different search algorithms have been reported in the
literature in order to achieve a substantial decrease in the amount of time needed
to solve the problem.

Cooperative search is a category of parallel algorithms, in which several
search algorithms are run in parallel in order to solve the optimization prob-
lem in hand. The search algorithms (run in parallel) may be different, that is
why a cooperative search technique may be also viewed as a hybrid algorithm.

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 32–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Taxonomy of Cooperative Search Algorithms 33

Sections 2 and 3 give a brief background about different taxonomies that
were proposed for both hybrid and parallel algorithms respectively. Coopera-
tive search area is identified in these taxonomies. Two different taxonomies of
cooperative search algorithms are presented in section 4 along with many defin-
itions found in the literature for these techniques. Different implementations of
this technique are reported and classified in section 5. Section 6 concludes this
paper.

2 Hybrid Algorithms

A taxonomy of hybrid algorithms was introduced in [20]. It was based on design
and implementation issues. The former issue concerns with the architecture of
the algorithms, while the later one is concerned with the hardware platform, the
programming model, and the environment on which the algorithm is to run.

The taxonomy (at the design level) had both hierarchical and flat portions.
Figure 1 shows the hierarchical portion with the cooperative part identified.

Hybrid Metaheuristics

Low-level High-level

Relay Relay Teamwork Teamwork

Fig. 1. Hybrid algorithms taxonomy

The cooperative part is identified in the high-level technique. In high-level
relay technique, self-contained algorithms are run in a sequential manner. This
technique relies on the fact that evolutionary algorithms (such as Genetic Algo-
rithms) are good in locating promising regions in the search space, but are not
suitable for fine-tuning near optimal solutions.

In this category, a local search algorithm is usually applied first to get promis-
ing initial solutions, then an evolutionary algorithm is applied to enrich these
solutions, finally a local search method is applied again to fine tune these solu-
tions. Figure 2 shows the structure of this hybrid algorithm.

In high-level teamwork technique, there are several self-contained algorithms
working in parallel and cooperating to find a solution. Cooperation is evident in

34 M. El-Abd and M. Kamel

Population to enhance

Initial population

Local Search 1

Evolutionary
Algorithm

Local Search 2

Fig. 2. High-level relay technique

this technique through the sharing of information. Note also that this technique
is actually a parallel algorithm.

In [1], a different classification was given for hybrid algorithms. The authors
classified the hybridization of meta-heuristics into three categories: (i) compo-
nent exchange among meta-heuristics, which is similar to the low-level hybridiza-
tion, (ii) cooperative search, which they relate to parallelization. So, it is similar
to high-level teamwork hybridization but it is put here as a stand-alone class,
(iii) integrating meta-heuristics and systematic methods. As shown, cooperative
search was put in this classification as a separate class.

3 Parallel Algorithms

Great attention is paid to the area of parallel meta-heuristics in order to solve
large sized optimization problems in a small amount of time. Parallel implemen-
tations of meta-heuristic algorithms give substantial decrease in time over their
sequential counterparts, even getting better solutions in some situations.

The simplest classification of parallel algorithms is given in [24], paralleliza-
tion of algorithms is classified into low-level and high-level parallelization.

Low-level parallelization achieves speed up by accelerating steps of the algo-
rithm that are computationally expensive. On the other hand, high-level par-
allelization requires changes to be made to the original algorithm. It involves
several algorithms running in parallel and cooperating by exchanging informa-
tion between them. As can be seen from this classification, cooperative search
algorithms are regarded as a high-level parallelization approach.

A more detailed classification [5] is illustrated in Figure 3 again with the
cooperative part identified.

The three categories are: (i) Operation parallelization, which is also called
low-level parallelization, (ii) Search space decomposition, in which each running
algorithm searches for a sub-solution in a sub-space, these sub-solutions are used
to construct a global one, which could be regarded as a cooperative scheme, and

A Taxonomy of Cooperative Search Algorithms 35

Parallel Algorithms

Operation
Parallelization

Search Space
Decomposition

Multi-search Threads

Cooperative Independent

Fig. 3. Parallel algorithms classification

(iii) Multi-search threads, in which several running algorithms search for a so-
lution in the whole space. This method could be applied with different levels
of cooperation. That is why it is further divided into independent, no coopera-
tion what so ever, and cooperative. From this classification, it can be seen that
cooperative search algorithms are put as a special type of parallel algorithms.

Many different classifications, in which cooperative algorithms could be iden-
tified, have been reported as well for different meta-heuristics which include Tabu
Search [6], Genetic Algorithms [4,17], and Simulated Annealing [7].

4 Cooperative Search Algorithms

4.1 Introduction

Previous discussions show that cooperative search algorithms is considered to
lie somewhere between hybrid and parallel algorithms. Different classification
schemes were given for both hybrid and parallel meta-heuristics. In some of them,
the cooperative part is put as a stand alone class. In others, the cooperative class
could be inferred.

There are many definitions in the literature for the cooperative search tech-
nique:

– “Teamwork hybridization represents cooperative optimization models, in
which we have many parallel cooperating agents, each agent carries out a
search in solution space” [20].

– In [21], the authors consider cooperative search as a category of parallel
algorithms. “These algorithms execute in parallel several search programs
on the same optimization problem instance”.

– “Cooperative search algorithms are parallel search methods that combine
several individual programs in a single search system” [22].

36 M. El-Abd and M. Kamel

– “Cooperative search is a parallelization strategy for search algorithms where
parallelism is obtained by concurrently executing several search programs”
[23].

– “Cooperative search consists of a search performed by agents that exchange
information about states, models, entire sub-problems, solutions or other
search space characteristics” [1]. The authors refer to cooperative search as
a loose form of hybridization. The authors also referred to the sequential
implementation of algorithms as a loose form of cooperation.

4.2 First Taxonomy (Algorithms Based)

The first taxonomy proposed for cooperative search algorithms is based on the
types of algorithms being used in the cooperative system and the implementa-
tion. Figure 4 illustrates this taxonomy.

The taxonomy shown gives rise to four different categories:

– Serial Homogenous Algorithms, this is concerned with having different in-
stances of the same algorithms searching in different subspaces. The algo-
rithms are run in a sequential manner, each algorithm provides a partial
solution to the problem. These partial solutions are used to provide a com-
plete solution that is evaluated and used in subsequent runs.

– Parallel Homogenous Algorithms, this category involves having different in-
stances of the same algorithm running in parallel and searching for a so-
lution. The information passed between these algorithms has many forms,
most likely the best solution found so far. This class is identified in the hybrid
taxonomy as a high-level teamwork technique.

– Serial Heterogenous Algorithms, this class involves having different algo-
rithms running in a pipeline fashion. The output of each algorithm supplied
as an input to the next algorithm. This class is identified in the hybrid
taxonomy as a high-level relay technique.

– Parallel Heterogenous Algorithms, same as the second class but with different
running algorithms.

Cooperative Search
Algorithms

Homogeneous Heterogeneous

Serial Parallel Serial Parallel

Fig. 4. Algorithms based taxonomy

A Taxonomy of Cooperative Search Algorithms 37

4.3 Second Taxonomy (Space Decomposition Based)

Adopting a cooperative search technique always incorporates some type of space
decomposition. Another taxonomy for cooperative search algorithms could be
based on the type of decomposition achieved. This taxonomy is shown in figure 5.

Levels of Cooperation

Implicit space
decomposition

Explicit space
decomposition

(Sharing of Partial
Solutions)

Hybrid Technique

Fig. 5. Space decomposition based taxonomy

The implicit space decomposition involves the decomposition of the search
space between different algorithms. This class refers to having different algo-
rithms (or different instances of the same algorithm) looking for a solution and
sharing useful information between them. There could be many choices for the
information to be shared depending on the algorithms being used. The name
implicit comes from the fact that the different algorithms explore different areas
in the search space due to having different initial solutions, different parameter
values, or both.

In the explicit space decomposition class, the search space is explicitly decom-
posed into sub-spaces. Each algorithm searches for a sub-solution in a different
sub-space of the problem. Hence, each algorithm provides a partial solution to
the problem, these partial solutions are gathered to provide a complete solution.

The hybrid approach refers to the idea of having a cooperative system that
employs both methods of space decomposition.

4.4 Relating the Two Taxonomies

The two taxonomies are related to each other by the following relations:

– The implicit space decomposition class in the second taxonomy involve the
implementation of parallel algorithms running concurrently and exchanging
information. These algorithms could be similar or different. Hence, this class
includes the parallel section of both the homogeneous and the heterogeneous
classes in the first taxonomy.

– The explicit space decomposition class is similar to the homogeneous serial
class in the first taxonomy. As both involve having the algorithms running in

38 M. El-Abd and M. Kamel

a serial fashion providing partial solutions to the problem, these partial solu-
tions are then gathered to generate a complete solution in order to evaluate
the performance of the cooperative system.

– The hybrid class in the second taxonomy includes the same classes that are
covered by the implicit space decomposition class with the difference that
the algorithms now some of them explore the whole search space (providing
complete solutions) and some of them search in different sub-spaces (provid-
ing partial solutions).

5 Reported Cooperative Systems

Many implementations of cooperative search techniques using Tabu Search could
be found in [5], many implementation for cooperative Simulated Annealing algo-
rithms are surveyed in [5,7]. In this work, some implementations of cooperative
Tabu Search algorithms and Genetic Algorithms that were not covered are pre-
sented. Cooperative implementations for Ant Colony Optimization and Particle
Swarm Optimization are also presented.

5.1 Implicit Space Decomposition Class

GAs have been widely used in cooperative environments [4]. The mostly used
models are the coarse-grained and fine-grained GAs. Both techniques fall into
the homogenous parallel category, the space decomposition is implicit.

In [8], a heterogenous parallel implementation which relies on implicit space
decomposition was introduced. Different agents were running in parallel and
exchanging information about the whole search space. Some agents used branch-
and-bound and the others used GAs.

ACO [9] is an optimization technique that was inspired by the foraging be-
haviour of ants. Different directions have been taken to incorporate ACO in a
cooperative system.

In [14] an island model which is similar to the one adopted using GAs was
proposed. The cooperating colonies exchange the locally best solutions found.
This implementation falls under the implicit space decomposition class.

The authors in [15,16] experimented with four different options for the in-
formation exchange between the parallel colonies in a homogenous parallel envi-
ronment. These options are: (i) exchange of globally best solutions, (ii) circular
exchange of locally best solutions, (iii) circular exchange of migrants, and (iv)
circular exchange of locally best solutions with migrants. The authors came to
the conclusion that ant algorithms with several colonies that do not exchange too
much information could improve the solution quality. They also concluded that
it is better to exchange the locally best solutions between neighbors in a directed
ring and not too often than exchanging the local best solutions very often.

A multiple ant colony algorithm was presented in [26]. It used three ant
colonies with different speed models to adaptively determine the number of clus-
tering. Reported results on synthetic and real data showed that this approach can

A Taxonomy of Cooperative Search Algorithms 39

improve the clustering performance. This implementation is based on implicit
space decomposition since the three colonies were performing the search in the
whole search space. It is considered to be a homogenous parallel implementation.

The PSO [10,13] is an optimization method widely used to solve continuous
nonlinear functions. It is a stochastic optimization technique that was originally
developed to simulate the movement of a flock of birds or a school of fish looking
for food.

A cooperative approach was introduced in [2], it was referred to as Concur-
rent PSO (CONPSO). This approach adopted the idea of having two swarms
searching concurrently for a solution with frequent message passing of informa-
tion. Hence, it relied on implicit space decomposition.

In [3], a multi-swarm technique was tested on a number of dynamic multi-
modal benchmark functions. A colony of multiple swarms is used. The swarms
communicate with each other only when they are following attractors that are
close to each other. The swarm that has a bad attractor gets all its particles
positions and velocities re-initialized. The approach relied on implicit space de-
composition and the swarms work in parallel. The communication is carried out
synchronously after every iteration to check whether the different attractors are
close to each other.

Different factors that control the behaviour of a multiple cooperating swarms
approach were studied in [11,12]. These factors included: (i) the synchronization
period, (ii) the communication strategy, and (iii) the number of cooperating
swarms.

5.2 Explicit Space Decomposition Class

A homogenous serial implementation which relies on explicit space decompo-
sition was reported in [19]. It was used for unconstrained non-linear function
optimization. Several GAs were running in a sequential manner, each GA was
concerned with optimizing a single dimension. In the end, the fitness of the
complete solution is used to calculate the fitness of individuals in different pop-
ulations.

A cooperative approach was introduced in [25], referred to as Cooperative
PSO (CPSO). The approach relies on explicit space decomposition. It adopted
the same method taken in [19] but using PSO instead of GAs. This implemen-
tation falls in the homogenous serial class.

5.3 Hybrid Class

In [23], a hierarchal cooperative model was introduced using TS. The model was
applied to the graph partitioning problem. Multiple TS algorithms were working
in parallel in a hierarchal fashion. Each algorithm supplies new information to
the one next to it in the hierarchy. The first level in the hierarchy searches for
a solution in the entire search space and it is the only level that can supply a
complete solution. The other levels search for a solution in different sub-spaces.
Hence, this model represents a hybrid cooperative search algorithm.

40 M. El-Abd and M. Kamel

Another hybrid approach is presented in [25], referred to as hybrid CPSO
(CPSO-H). The algorithm works by applying two different components in a se-
quential manner. One component adopts the CPSO approach, the other one is
the normal PSO algorithm. Hence, one component is a cooperative system by
itself adopting the explicit space decomposition approach, and the other compo-
nent explores the whole search space. Each component runs only for one iteration
then it passes the best solution found so far to the next component.

6 Conclusions

This paper covered many classification schemes that were proposed for hy-
brid and parallel meta-heuristics. The area of cooperative search algorithms are
identified in the presented taxonomies. This work proposed two classification
schemes for cooperative search algorithms. The classification was based on two
different criteria: (i) the algorithms used, and (ii) the level of space decompo-
sition achieved. Different implementations of cooperative search algorithms are
reported and classified using these classifications.

References

1. Blum C. and Roli A. ”Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison”. ACM Computing Surveys, vol. 35, no. 3, pp. 268-
308, 2003.

2. Baskar S. and Suganthan P. N. ”A Novel Concurrent Particle Swarm Optimiza-
tion”, Proceedings of the 2004 Congress on Evolutionary Computation, vol. 1, pp.
792-796, 2004.

3. Blackwell T. and Branke J., ”Multi-Swarm Optimization in Dynamic Environ-
ments,” in Applications of Evolutionary Computing, vol. 3005, Lecture Notes in
Computer Science, G. R. Raidl, Ed.: Springer, pp. 488-599, 2004.

4. Cantu-Paz E. ”A Survey of Parallel Genetic Algorithms”. IllGAL Re-
port 97003, The University of Illinois, 1997. Available on-line at: ftp://ftp-
illigal.ge.uiuc.edu/pub/papers/IlliGALs/97003.ps.Z.

5. Crainic T. G. and Toulouse M. ”Parallel Strategies for Metaheuristics”. In F.
Glover and G. Kochenberger, editors, State-of-the-Art Handbook in Metaheuris-
tics. Kluwer Academic Publishers, 2002.

6. Crainic T. G., Toulouse M., and Gendreau M. ”Towards a Taxonomy of Parallel
Tabu Search Heuristics”. INFORMS Journal on Computing, vol. 9, no. 1, pp. 61-72,
1997.

7. Greening D. R. ”Parallel Simulated Annealing Techniques”. Physica D, vol. 42,
pp. 293-306, 1990.

8. Denzinger J. and Offermann T. ”On Cooperation between Evolutionary Algorithms
and other Search Paradigms”. In Proceedings of the 1999 Congress on Evolutionary
Computation, vol. 3, 1999.

9. Dorigo M., Di Caro G., and Gambardella L. M. ”Ant Algorithms for Discrete
Optimization”. Artificial Life, vol. 5, no.2, pp. 137-172, 1999.

10. Eberhart R. C. and Kennedy J. ”A New Optimizer using Particle Swarm Theory”,
Proceedings of the 6th International Symposium on Micro Machine and Human
Science, pp. 39-43, 1995.

A Taxonomy of Cooperative Search Algorithms 41

11. El-Abd M., Kamel M. ”Multiple Cooperating Swarms for Non-Linear Function
Optimization”. Proceedings of the 4th IEEE International Workshop on Soft Com-
puting for Transdiciplinary Science and Technology, 2nd International Workshop
on Swarm Intelligence and Patterns, pp. 999-1008, 2005.

12. El-Abd M., Kamel M. ”Factors Governing The Behaviour of Multiple Cooperating
Swarms”. Accepted in the Genetic and Evolutionary Computation COnference,
2005.

13. Kennedy J. and Eberhart R. C. ”Particle Swarm Optimization”, Proceeding of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.

14. Michels R. and Middendorf M. ”An Ant System for The Shortest Common Super-
sequence Problem”. In Corne D., Dorigo M., and Glover F., editors, New Ideas in
Optimization, McGrew-Hill, pp. 51-61, 1999.

15. Middendorf M., Reischle F., and Schmeck H. ”Information Exchange in Multi
Colony Ant Algorithms”. In Rolim J., editor, Parallel and Distributed Computing,
Proceedings of 15 IPDPS 2000 Workshops, 3rd Workshop on Biologically Inspired
Solutions to Parallel Processing Problems, Lecture Notes in Computer Science
1800, Springer-Verlag, pp. 645-652, 2000.

16. Middendorf M., Reischle F., and Schmeck H. ”Multi Colony Ant Algorithms”.
Journal of Heuristics, Kluwer, vol. 8, pp. 305-320, 2002.

17. Nowostawski M., and Poli R. ”Parallel Genetic Algorithm Taxonomy”. 3rd In-
ternational Conference on Knowledge-Based Intelligent Information Engineering
Systems, pp. 88-92, 1999.

18. Peram T., Veeramachaneni K., and Mohan C. K. ”Distance-Fitness-Ratio Particle
Swarm Optimization”, Proceeding of the IEEE 2000 Swarm Intelligence Sympo-
sium, pp. 174-181, 2003.

19. Potter M .A., and de Jong K. A. ”A Cooperative Coevolutinary Approach to Func-
tion Optimization”, in The Third Parallel Problem Solving from Nature, Springer-
Verlag, pp. 249-257, 1994.

20. Talbi E. ”A Taxonomy of Hybrid Metaheuristics”. Journal of Heuristics, vol. 8, no.
5, pp. 541-564, 2002.

21. Toulouse M., Crainic T. G., Sanso B., and Thulasiraman K. ”Self-Organization in
Cooperative Tabu Search Algorithms”. IEEE International Conference on Systems,
Man, and Cybernetics, vol. 3, 1998.

22. Toulouse M., Crainic T. G., and Sanso B. ”An Experimental Study of The Systemic
Behavior of Cooperative Search Algorithms”. In Meta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimization. S. Voss. S. Martello, I. Osman,
and C. Roucairol, editors. Kluwer Academic Publishers, pp. 373-392, 1999.

23. Toulouse M., Thulasiraman K., and Glover F. ”Multi-Level Cooperative Search: A
New Paradigm for Combinatorial Optimization and an Application to Graph Par-
titioning”. In Proceeding of the 5th International Euro-Par Conference on Parallel
Processing. Lecture Notes in Computer Science. Springer-Verlag, New York, pp.
533-542, 1999.

24. Trienekens H. W. J. M., and de Bruin A. ”Towards a Taxonomy of Parallel Branch
and Bound Algorithms”. Report EUR-CS-92-01, Department of Computer Science,
Erasmus University Rotterdam, 1992.

25. van den Bergh F. and Engelbrech A. P. (2004), ”A Cooperative Approach to Parti-
cle Swarm Optimization”, IEEE Transactions on Evolutionary Computation, vol.
8, no. 3, pp. 225-239.

26. Yang Y., and Kamel M. ”Clustering Ensemble using Swarm Intelligence”. In Pro-
ceedings of The 3rd Swarm Intelligence Symposium, pp. 65-71, 2003.

A Hybrid Genetic and Variable Neighborhood
Descent for Probabilistic SAT Problem�

Zoran Ognjanović1, Uroš Midić1, and Nenad Mladenović1,2

1 Mathematical Institute,
Kneza Mihaila 35, 11000 Belgrade, Serbia and Montenegro

{zorano, uros.m}@mi.sanu.ac.yu
2 School of Mathematics, University of Birmingham, UK

N.Mladenovic@bham.ac.uk

Abstract. In this paper we develop a satisfiability checker for proba-
bilistic logic. Our approach is based on a hybrid algorithm which com-
bines genetic algorithm approach with variable neighborhood descent.
Our hybrid compares favorable with previous pure genetic algorithm.
Computational experiences show that problems with 200 propositional
letters can be solved. They are, to the best of our knowledge, the largest
PSAT-problems reported in the literature.

1 Introduction

Researchers in artificial intelligence have studied uncertain reasoning in many
ways. Some of the formalisms for representing and reasoning with uncertain
knowledge are based on probabilistic logic [2,10,12]. In that logic classical propo-
sitional language is expanded by expressions that speak about probability, while
formulas remain true or false. It allows to make inferences in a general framework,
without any special assumptions about underlying probability distributions. For
example, it is possible to check consistency of rules with associated uncertainty
factors and the corresponding techniques designed to handle uncertain knowl-
edge in expert systems.

The problem of satisfiability of a probabilistic formula (PSAT, for short, also
called the decision form of probabilistic satisfiability in [5]) is NP-complete [2,4].
PSAT can be reduced to the linear programming problem. However, the number
of variables in the linear system corresponding to a formula is exponential in
the number of propositional letters from the formula. It makes any standard
linear system solving procedure (Fourier-Motzkin elimination, for example) not
suitable in practice when scaling up to larger formulas. In [10] Nilsson proposed
solving those large problem instances using heuristics. However, it is showed
that it is still possible to use more efficient numerical methods - for example the
powerful column generation procedure of linear programming [8,9].

� This research was supported by Ministarstvo nauke i zaštite životne okoline Repub-
like Srbije, through Matematički institut, under grants 1379 and 1583.

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 42–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Hybrid Genetic and Variable Neighborhood Descent for PSAT Problem 43

In more recent papers [13,14], a procedure for PSAT based on the genetic
algorithm (GA, for short) approach [1] was presented. Our system for PSAT was
a straightforward implementation built on the top of a general GA-simulator
which allowed us to concentrate on problem-specific issues, i.e., how to generate
and represent problem instances, on specific GA-operators etc. Nevertheless,
our satisfiability checker was able to solve, to the best of our knowledge, the
largest PSAT-problems reported in the literature. We considered a set containing
27 randomly generated PSAT-instances with up to 200 propositional letters.
Although the checker found solutions for some of the biggest problem instances,
there were two instances which were very hard for the system which, in fact, was
not able to solve them. Thus, we continued our efforts to develop an efficient and
successful satisfiability checker. We built a new implementation of the checker
which combines genetic algorithm approach with variable neighborhood descent
(VND, for short) [6,11]. From now on, we use GA-PSAT and GA-VND-PSAT to
denote our previous and the current implementation. In this paper we describe:

1. some new PSAT-specific GA-operators and the VND-scheme included in the
algorithm,

2. a new, more efficient, implementation of the algorithm, and
3. some experimental analysis of its performance.

GA-VND-PSAT is a well-engineered C++ implementation of the problem-spe-
cific data structures, GA-operators, and the VND-scheme, so the qualities of
the implementations of our systems are rather different. It has positive effect on
the computational behavior, but new GA-operators and the VND-scheme have
even more important influence on differences between GA-PSAT and GA-VND-
PSAT.

In our approach, we perform the well-know translation of probabilistic formu-
las into linear systems. Then we use the GA-VND-approach to try to efficiently
solve those systems. The price we pay for this is that we have a partial decision
procedure, i.e., the algorithm cannot state that there is no solution when none
is found. However, a fast algorithm may still be preferable to a slow decision
procedure which guarantees to find a solution if one exists.

The rest of the paper is organized as follows. In Section 2 we give a brief
description of probabilistic logic and PSAT. In Section 3 we summarize how
the general GA-VND-approach is adapted to PSAT. Section 4 contains some
experimental results. We give concluding remarks and directions for further in-
vestigations in Section 5.

2 Probabilistic Logic and PSAT

Let V ar = {p, q, r, . . .} be the set of propositional letters. A weight term is
an expression of the form a1w(α1) + . . . + anw(αn), where ai’s are rational
numbers, and αi’s are classical propositional formulas containing propositional
letters from V ar. The intended meaning of w(α) is probability of α. A basic
weight formula has the form t ≥ c, where t is a weight term, and c is a rational

44 Z. Ognjanović, U. Midić, and N. Mladenović

number. (t < c) denotes ¬(t ≥ c). A weight literal is an expression of the form
t ≥ c or t < c. The set of all weight formulas contains all basic weight formulas,
and it is closed under Boolean operations. Let α be a classical propositional
formula and {p1, . . . , pk} be the set of all propositional letters that appear in α.
An atom of α (also called possible world in [8,10]) is defined as a formula at =
±p1 ∧ . . .∧±pk where ±pi ∈ {pi, ¬pi}. There are 2k different atoms of a formula
containing k primitive propositions. Let At(α) denote the set {at1, . . . , at2k} of
all atoms of α. Every classical propositional formula α is equivalent to formulas
DNF(α) and CDNF(α) = ∨m

i=1ati, called disjunctive normal form and complete
disjunctive normal form of α, respectively. We use at ∈ CDNF(α) to denote
that the atom at appears in CDNF(α). A formula f is in the weight conjunctive
form (wfc-form) if it is a conjunction of weight literals. Every weight formula f

is equivalent to a disjunctive normal form DNF(f) =
∨m

i=1
∧ki

j=1(a
i,j
1 w(αi,j

1) +
. . . + ai,j

ni,j
w(αi,j

ni,j
) ρi ci,j), where disjuncts are wfc-formulas, i.e., ρi is either ≥

or <. Since a disjunction is satisfiable if at least one disjunct is satisfiable, we
will consider formulas in the wfc-form only.

Let us suppose that we have a set T of sentences describing some events and
the corresponding probabilities. Some conditions must be satisfied to guarantee
consistency of T . For example, the probability of an event A must be greater
than or equal to the probability of the intersection of events A and B. More
formally, PSAT is the following problem: given a formula f in the wfc-form, is
there any probability function defined on At(f) such that f is satisfiable? Note
that a wfc-formula f is satisfiable iff the following linear system is satisfiable:

∑
at∈At(f) μ(at) = 1

μ(at) ≥ 0, for every at ∈ At(f),
(a1

∑
at∈CDNF(α1) μ(at) + . . . + an

∑
at∈CDNF(αn) μ(at)) ρ c

(for every weight literal a1w(α1) + . . . + anw(αn) ρ c in f)

For example, w(p → q) + w(p) ≥ 1.7 ∧ w(q) ≥ 0.6 is satisfiable since the same
holds for the linear system

μ(p ∧ q) + μ(p ∧ ¬q) + μ(¬p ∧ q) + μ(¬p ∧ ¬q) = 1
μ(p ∧ q) ≥ 0
μ(p ∧ ¬q) ≥ 0
μ(¬p ∧ q) ≥ 0
μ(¬p ∧ ¬q) ≥ 0
μ(p ∧ ¬q) + μ(¬p ∧ q) + μ(¬p ∧ ¬q) + 2μ(p ∧ q) ≥ 1.7
μ(p ∧ q) + μ(¬p ∧ q) ≥ 0.6.

NP-completeness of PSAT follows from the statement that a system of L linear
(in)equalities has a nonnegative solution if it has a nonnegative solution with at
most L entries positive such that the sizes of entries are bounded by a polynomial
function of the size of the longest coefficient from the system [2,4].

A Hybrid Genetic and Variable Neighborhood Descent for PSAT Problem 45

3 GA-VND for PSAT

The input for the program is a weight formula f in the wfc-form with L weight
literals. Without loss of generality, we demand that classical formulas appearing
in weight terms are in disjunctive normal form. Let V ar(f) = {p1, . . . , pN}
denote the set of all propositional letters from f , and |V ar(f)| = N .

An individual M consists of L pairs of the form (atom, probability) that
describe a probabilistic model. The first coordinate is given as a bit string of
length N , where 1 at the position i denotes ¬pi, while 0 denotes pi. Probabilities
are represented by floating point numbers.

For an individual M = ((at1, μ(at1)), . . . , (atN , μ(atN))), the linear system
is equivalent to:

∨L
i=1(

∑L
j=1 aijμ(atj)) ρi ci. Note that it is possible that some

aij = 0, though [aij] matrix is usually not sparse.
GA-VND-PSAT has been optimized for speed (at the expense of memory

space used for cached data) by caching the linear system coefficients (a1j , . . . , aLj)
associated with each atom atj . The coefficients are recalculated only when the
atom at is changed due to mutation or crossover of the individuals.

The individuals are evaluated using function d(M), which measures a degree
of unsatisfiability of an individual M . Function d(M) is defined as the distance
between left and right hand side values of the weight literals not satisfied in the
model described by M :

d(M) =
√ ∑

M �|=ti ρi ci

[ai
1

∑
at∈CDNF(αi

1)

μ(at) + . . . + ai
ni

∑
at∈CDNF(αi

ni
)

μ(at) − ci]2.

If d(M) = 0, all the inequalities in the linear system are satisfied, hence the
individual M is a solution.

The following features of GA have been set for all tests. The population
consists of 10 individuals; one set of tests has been performed with a population
of 20 individuals. Selection is performed using the rank-based roulette operator
(with the rank from 2.5 for the best individual to 1.6 for the worst individual - the
step is 0.1). The crossover operator is one-point, with the probability 0.85. The
elitist strategy with one elite individual is used in the generation replacement
scheme. Multiple occurrences of an individual are removed from the population.

Two problem-specific two-parts mutation operator were used. The first op-
erator (TP1) features two different probabilities of mutation for the two parts
(atoms, probabilities) of an individual; after mutation, the real numbers in prob-
abilities part of an individual have to be scaled since their sum must equal 1.
The second operator (TP2) is a combination of ordinary mutation on atoms
part, and a special mutation on probabilities part of an individual. Instead of
performing mutation on two bits in the representation of probabilities part, two
members pi1, pi2 of probabilities part are chosen randomly and then replaced
with random p′i1 , p

′
i2

, such that pi1 + pi2 = p′i1 + p′i2 and 0 ≤ p′i1 , p
′
i2

≤ 1. The
sum of probabilities does not change and no scaling is needed.

46 Z. Ognjanović, U. Midić, and N. Mladenović

Four neighborhood structures are used within the VND-scheme [6,11]:
LS1 (LS denotes ”local search”): For an individual M all the weight literals

are divided into two sets: the first set (B) contains all satisfied literals, while the
second one (W) contains all the remaining literals. The literal tB ρB cB ∈ B
(called the best one) with the biggest difference |μ(tB) − cB| between the left
and the right side, and the literal tW ρW cW ∈ W (the worst one) with the
biggest difference |μ(tW) − cW | are found. Two sets of atoms are determined:
the first set BAt(f) contains all the atoms from M satisfying at least one classical
formula αB

i from tB = aB
1 w(αB

1)+ . . .+aB
kB

w(αB
kB

), while the second one WAt(f)

contains all the atoms from M satisfying at least one classical formula αW
i from

tW = aW
1 w(αW

1) + . . . + aW
kW

w(αW
kW

). The probabilities of a randomly selected
atom from BAt(f) \ WAt(f) and a randomly selected atom from WAt(f) \ BAt(f)
are changed so that tB ρB cB remains satisfied, while the distance |μ(tW) − cW |
is decreased or tW ρW cW is satisfied.

LS2: For na individual M , the worst weight literal tW ρW cW from W (the set
of unsatisfied literals) with the biggest difference |μ(tW)− cW | is found. The lit-
eral can be represented as

∑L
j=1 aWjμ(atj) ρW cW . We try to change the vector

of probabilities [μ(atj)], so that the linear equation
∑L

j=1 aWjμ(atj) = cW is sat-
isfied. The equation

∑L
j=1 aWjμ(atj) = cW represents a hyper-plane in Rn while

[aWj] denotes a vector normal to the hyper-plane. The projection of [μ(atj)] to
the hyper-plane - which satisfies the equation - is [μ′(atj)] = [μ(atj)]+kW [aWj].
The calculation of k and the projection vector is simple and straight-forward

(k = cw−aW ◦[μ(atj)]
|aW |2 =

cw−
∑ L

j=1 μ(atj)aWj∑
L
j=1 aWj

2). We set the new vector of probabilities

to be [μ′′(atj)] = [max{μ′(atj),0}]∑
L
k=1 max{μ′(atk),0} (negative coordinates are replaced with 0,

and the vector is scaled so that the sum of its coordinates
∑L

j=1 μ′′(atj) equals 1).
LS3 is similar to LS2, with the difference being made when choosing the

weight literal tW ρW cW from W (the set of unsatisfied literals). The chosen
literal is the one with the smallest difference |μ(tW) − cW | ; it is the best bad
literal.

LS4 is similar to LS2 and LS3. Instead of calculating the projection [μ′(atj)] =
[μ(atj)]+kW [aWj] for one chosen weight literal tW ρW cW from W , we calculate
kWi [aWij] for each literal tWi ρWi cWi from W (the set of unsatisfied literals)
and calculate the intermediate vector [μ′(atj)], by adding the linear combination
to the original vector: [μ′(atj)] = [μ(atj)] +

∑
Wi

kWi [aWij]. The new vector of
probabilities [μ′′(atj)] is then calculated in same fashion as in LS2.

4 Experimental Results

In this section we first present our test methodology and then we discuss the
performed tests.

In our methodology, introduced in [13], the performance of the system is eval-
uated on a set of PSAT-instances, i.e., on a set of randomly generated formulas

A Hybrid Genetic and Variable Neighborhood Descent for PSAT Problem 47

Table 1. Results of tests with various mutation-types, mutation rates and pop. sizes

TP1 TP2 TP2 TP2 TP2
(12,4) (12,4) (24,8) (48,16) (12,4)

N,L, 10 ind. 10 ind. 10 ind. 10 ind. 20 ind.
inst.no. no l.s.p. no l.s.p. no l.s.p. no l.s.p. no l.s.p.
50, 50, 1 5/52 5/89 5/61 5/126 5/35
50, 50, 2 5/9 5/14 5/7 5/3 5/3
50, 50, 3 5/220 5/249 5/456 5/231 5/61
50, 100, 1 5/73 5/100 5/104 5/167 5/47
50, 100, 2 5/286 5/262 5/442 5/602 5/144
50, 100, 3 5/996 5/643 5/1008 5/2626 5/261
50, 250, 1 5/707 5/592 5/979 5/1552 5/359
50, 250, 2 5/2486 5/1959 5/7222 0 5/1062
50, 250, 3 5/713 5/670 5/1292 5/2338 5/373
100, 100, 1 5/13 5/36 5/22 5/33 5/19
100, 100, 2 5/22 5/16 5/18 5/19 5/8
100, 100, 3 5/115 5/70 5/60 5/49 5/37
100, 200, 1 5/294 5/475 5/623 5/926 5/302
100, 200, 2 5/107 5/108 5/100 5/70 5/67
100, 200, 3 5/101 5/78 5/91 5/65 5/64
100, 500, 1 5/1470 5/1819 5/2882 5/4411 5/1131
100, 500, 2 5/3426 5/2881 5/4083 1/6470 5/1525
100, 500, 3 4/6817 5/4739 0 0 5/2667
200, 200, 1 0 4/2964 0 0 5/2428
200, 200, 2 5/117 5/278 5/162 5/208 5/159
200, 200, 3 5/12 5/126 5/143 5/124 5/81
200, 400, 1 5/20 5/166 5/103 5/82 5/80
200, 400, 2 3/4549 5/3428 0 0 5/2010
200, 400, 3 3/4377 5/3049 0 0 5/1733
200, 1000, 1 5/1403 5/2878 5/3619 5/4043 5/1912
200, 1000, 2 0 0 0 0 0
200, 1000, 3 5/1404 5/2863 5/3955 5/4384 5/1758

Table 2. Results of tests for pop.size = 10, TP2 mutation, with various mutation rates
and different LS’s

TP2 (12,4) TP2 (24,8) TP2 (48,16)
L, N, Local improvement procedure is applied in each generation
inst.no. LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4
50, 50, 1 5/14 5/43 5/49 5/43 5/16 5/32 5/41 5/53 5/23 5/47 5/39 5/63
50, 50, 2 5/6 5/1 5/2 5/2 5/6 5/1 5/1 5/3 5/6 5/1 5/2 5/2
50, 50, 3 5/55 5/210 5/114 5/126 5/33 5/118 5/88 5/106 5/19 5/145 5/69 5/94
50, 100, 1 5/66 5/10 5/32 5/12 5/72 5/8 5/32 5/10 5/84 5/11 5/41 5/10
50, 100, 2 5/195 5/75 5/193 5/126 5/164 5/73 5/126 5/130 5/257 5/112 5/144 5/153
50, 100, 3 5/113 5/287 5/983 5/625 5/123 5/367 5/888 5/601 5/165 5/225 5/792 5/1119
50, 250, 1 5/709 5/415 5/291 5/524 5/975 5/341 5/209 5/460 5/1666 5/273 5/214 5/587
50, 250, 2 5/628 5/942 5/647 5/1604 5/681 5/1012 5/640 5/1738 5/2085 5/1165 5/1090 5/2170
50, 250, 3 5/444 5/232 5/280 5/230 5/447 5/143 5/240 5/209 5/394 5/155 5/227 5/150
100, 100, 1 5/22 5/1 5/2 5/5 5/25 5/1 5/1 5/5 5/22 5/1 5/1 5/4
100, 100, 2 5/18 5/11 5/7 5/8 5/20 5/5 5/9 5/7 5/18 5/3 5/7 5/5
100, 100, 3 5/71 5/47 5/49 5/49 5/57 5/37 5/55 5/53 5/68 5/31 5/41 5/44
100, 200, 1 5/354 5/107 5/283 5/182 5/258 5/115 5/187 5/173 5/208 5/60 5/205 5/194
100, 200, 2 5/31 5/130 5/86 5/100 5/35 5/114 5/88 5/44 5/34 5/51 5/27 5/65
100, 200, 3 5/99 5/30 5/64 5/82 5/96 5/17 5/19 5/25 5/69 5/16 5/53 5/46
100, 500, 1 5/1024 5/750 5/657 5/1458 5/626 5/784 5/614 5/1286 5/1046 5/556 5/341 5/2011
100, 500, 2 5/1598 5/1579 5/1320 5/1264 5/1548 5/1297 5/651 5/836 5/1063 5/1466 5/505 5/801
100, 500, 3 5/2088 5/3270 2/1763 5/2234 5/1462 5/3105 5/1938 5/2144 5/1546 5/3773 5/989 5/1730
200, 200, 1 3/2902 3/4447 4/2089 2/2829 5/1693 5/2268 5/2065 5/2691 5/1455 5/2076 5/1499 5/1206
200, 200, 2 5/395 5/271 5/181 5/273 5/293 5/185 5/125 5/178 5/217 5/118 5/84 5/125
200, 200, 3 5/157 5/26 5/60 5/41 5/144 5/17 5/39 5/13 5/155 5/12 5/37 5/24
200, 400, 1 5/41 5/58 5/40 5/153 5/30 5/26 5/50 5/62 5/34 5/32 5/13 5/38
200, 400, 2 0 5/2024 5/1562 5/2694 0 5/2063 5/1140 5/3686 0 5/3622 5/1045 0
200, 400, 3 0 5/1764 4/1090 5/1467 0 5/1309 5/692 5/1435 0 5/1412 5/631 5/1372
200, 1000, 1 5/3911 5/1160 5/1608 5/2545 5/3144 5/946 5/1183 5/2168 5/4167 5/630 5/511 5/2586
200, 1000, 2 0 0 0 0 0 0 0 0 0 0 1/2506 0
200, 1000, 3 5/4054 5/1658 5/897 3/2691 5/4016 5/1127 5/959 5/2285 4/4401 5/1254 5/1085 5/2115

in the wfc-form (with classical formulas in disjunctive normal form). The advan-
tage of this approach is that a formula can be randomly generated according to
the following parameters: N - the number of propositional letters, L - the num-
ber of weight literals, S - the maximal number of summands in weight terms,
and D - the maximal number of disjuncts in DNF’s of classical formulas. The
considered set of test problems contains 27 satisfiable formulas. Three PSAT-
instances were generated for each of 9 pairs of (N, L), where N ∈ {50, 100, 200},

48 Z. Ognjanović, U. Midić, and N. Mladenović

Table 3. Results of tests for pop.size = 10, TP2 mutation, with various mutation rates
and LS’s. LS’s are used in each third generation cycle.

TP2 (12,4) TP2 (24,8) TP2 (48,16)
L, N, Local improvement procedure is applied in each third generation
inst.no. LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4
50, 50, 1 5/32 5/40 5/63 5/54 5/21 5/37 5/52 5/58 5/23 5/39 5/41 5/28
50, 50, 2 5/7 5/3 5/3 5/3 5/7 5/3 5/4 5/4 5/4 5/2 5/4 5/3
50, 50, 3 5/63 5/141 5/109 5/138 5/56 5/193 5/105 5/151 5/48 5/186 5/63 5/87
50, 100, 1 5/99 5/18 5/36 5/10 5/92 5/19 5/33 5/12 5/97 5/25 5/37 5/20
50, 100, 2 5/148 5/92 5/144 5/126 5/173 5/114 5/193 5/98 5/232 5/215 5/115 5/90
50, 100, 3 5/184 5/325 5/446 5/461 5/181 5/237 5/607 5/477 5/330 5/560 5/1551 5/1435
50, 250, 1 5/749 5/457 5/279 5/478 5/759 5/420 5/282 5/525 5/1677 5/626 5/312 5/464
50, 250, 2 5/863 5/1029 5/763 5/1302 5/935 5/763 5/803 5/2215 5/1510 5/3307 5/1937 4/5124
50, 250, 3 5/327 5/268 5/257 5/249 5/297 5/205 5/261 5/207 5/923 5/173 5/173 5/151
100, 100, 1 5/25 5/3 5/8 5/6 5/27 5/3 5/5 5/10 5/25 5/3 5/4 5/9
100, 100, 2 5/12 5/5 5/13 5/11 5/18 5/8 5/13 5/11 5/12 5/11 5/11 5/10
100, 100, 3 5/88 5/47 5/63 5/58 5/56 5/41 5/43 5/58 5/50 5/37 5/31 5/37
100, 200, 1 5/271 5/131 5/295 5/210 5/278 5/111 5/181 5/156 5/234 5/94 5/296 5/137
100, 200, 2 5/45 5/146 4/42 5/142 5/38 5/67 5/48 5/97 5/36 5/44 5/24 5/41
100, 200, 3 5/90 5/46 5/51 5/64 5/71 5/25 5/74 5/58 5/51 5/35 5/29 5/31
100, 500, 1 5/787 5/1147 5/883 5/1286 5/766 5/821 5/464 5/1377 5/1028 5/895 5/306 5/1714
100, 500, 2 5/1393 5/2565 5/1061 5/1409 5/1386 5/1436 5/856 5/846 5/1559 5/1601 5/517 5/730
100, 500, 3 5/2375 5/3116 2/1649 5/2598 5/1327 5/3429 5/1452 5/2130 5/2199 5/4200 5/734 5/2029
200, 200, 1 3/1685 4/3877 4/3073 5/4482 5/2706 5/1567 4/3018 4/1722 5/1959 5/2161 5/2064 4/1917
200, 200, 2 5/520 5/323 5/384 5/285 5/301 5/226 5/146 5/278 5/220 5/118 5/97 5/114
200, 200, 3 5/186 5/25 5/49 5/40 5/154 5/35 5/39 5/54 5/88 5/26 5/29 5/34
200, 400, 1 5/74 5/64 5/40 5/145 5/40 5/50 5/46 5/64 5/51 5/36 5/16 5/53
200, 400, 2 0 5/2226 5/1950 5/2922 0 5/2189 5/1260 5/3915 0 4/4194 5/2138 0
200, 400, 3 0 5/1954 5/1549 5/1912 0 5/1738 5/1039 5/1345 0 5/1801 5/864 5/1584
200, 1000, 1 5/3783 5/1353 5/1505 5/2458 5/3643 5/921 5/1040 5/2225 5/4104 5/1155 5/675 5/2763
200, 1000, 2 0 0 0 0 0 0 2/4313 0 0 0 1/3923 0
200, 1000, 3 5/3880 5/1754 5/1520 5/2397 5/3774 5/1455 5/1011 5/2361 4/4652 5/1552 5/496 5/2519

Table 4. Results of tests for pop.size = 10, TP2 mutation, and LS’s. LS’s are used
after each generation cycle. No mutation of probabilities part - it is reinitialized after
each five generation cycle.

TP2 (12,0) TP2 (24,0) TP2 (48,0)
L, N, LS is applied in each generation. Probabilities reinitialized in each fifth generation.
inst.no. LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4
50, 50, 1 5/64 5/78 5/114 5/100 5/23 5/56 5/90 5/122 5/21 5/40 5/68 5/135
50, 50, 2 5/10 5/1 5/1 5/3 5/7 5/1 5/2 5/2 5/5 5/1 5/1 5/3
50, 50, 3 5/72 5/2652 5/515 5/905 5/87 5/592 5/719 5/1649 5/34 5/596 5/387 5/1317
50, 100, 1 5/244 5/11 5/66 5/6 5/144 5/7 5/52 5/8 5/149 5/10 5/51 5/8
50, 100, 2 5/828 5/493 5/987 5/942 5/626 5/248 5/589 5/534 5/417 5/165 5/380 5/352
50, 100, 3 5/1134 4/3436 2/3807 2/3231 5/399 5/3016 5/4837 5/2809 5/230 5/3001 2/8483 5/4084
50, 250, 1 5/3533 5/1967 5/1663 5/1709 5/1776 5/1247 5/1512 5/1389 5/1864 5/1412 5/966 5/824
50, 250, 2 5/4940 5/5186 4/5444 5/4309 5/5155 5/4750 5/4088 4/3380 5/3908 3/3440 4/2608 5/2904
50, 250, 3 5/2747 5/1475 5/1379 5/1821 5/2098 5/808 5/961 5/885 5/1755 5/648 5/701 5/584
100, 100, 1 5/17 5/1 5/2 5/5 5/25 5/1 5/1 5/8 5/22 5/1 5/1 5/6
100, 100, 2 5/29 5/7 5/7 5/8 5/16 5/6 5/19 5/11 5/16 5/7 5/15 5/15
100, 100, 3 5/182 5/130 5/216 5/136 5/161 5/84 5/139 5/119 5/107 5/97 5/114 5/117
100, 200, 1 5/4340 5/175 5/1341 5/669 5/3398 5/206 5/756 5/556 5/1757 5/146 5/999 5/370
100, 200, 2 5/44 5/193 5/659 5/343 5/24 5/164 5/273 5/139 5/44 5/98 5/101 5/118
100, 200, 3 5/272 5/115 5/82 5/93 5/217 5/74 5/124 5/63 5/221 5/57 5/55 5/80
100, 500, 1 1/6180 5/4608 2/4928 0 3/3862 5/2889 5/3835 5/6362 5/2450 5/1561 5/2541 5/4918
100, 500, 2 0 2/6595 0 1/5478 1/6055 4/2248 3/4932 4/5190 1/5834 4/3007 5/4221 5/2323
100, 500, 3 0 0 0 0 0 0 0 0 2/5650 0 2/3946 0
200, 200, 1 0 0 0 0 0 0 0 0 0 0 0 0
200, 200, 2 4/1066 5/2030 5/983 4/2421 4/1859 5/723 5/1244 4/2807 5/934 5/680 5/655 5/1367
200, 200, 3 5/814 5/199 5/179 5/292 5/382 5/159 5/201 5/284 5/294 5/47 5/109 5/218
200, 400, 1 5/96 5/122 5/343 5/334 5/110 5/183 5/332 5/262 5/70 5/172 5/247 5/134
200, 400, 2 0 0 0 0 0 0 0 0 2/3155 2/4084 0 0
200, 400, 3 0 0 0 0 1/1602 0 0 0 1/1673 0 1/3333 0
200, 1000, 1 0 0 0 0 1/4398 2/4147 0 0 2/3025 5/3439 2/3660 0
200, 1000, 2 0 0 0 0 0 0 0 0 0 0 0 0
200, 1000, 3 0 0 0 0 0 0 0 1/3328 2/2083 4/4012 1/3909 1/4709

and L ∈ {N, 2N, 5N}. For every instance S = D = 5. Having the above pa-
rameters, L atoms and their probabilities (with the constraint that the sum of
probabilities must be equal to 1) are chosen. Next, a formula f containing L
basic weight formulas is generated. It contains primitive propositions from the
set {p1, . . . , pN} only. Every weight literal contains at most S summands in its

A Hybrid Genetic and Variable Neighborhood Descent for PSAT Problem 49

Table 5. Results of tests for pop.size = 10, TP2 mutation, and VND. In each genera-
tion, LS’s are used in cycle, as long as any of them makes progress.

TP2(12,4) TP2(24,8) TP2(48, 16)
L, N, Combination of all LS’s is
inst.no. applied in each generation.
50, 50, 1 5/11 5/6 5/7
50, 50, 2 5/1 5/1 5/1
50, 50, 3 5/11 5/30 5/15
50, 100, 1 5/5 5/5 5/8
50, 100, 2 5/109 5/73 5/76
50, 100, 3 5/68 5/116 5/121
50, 250, 1 5/344 5/249 5/235
50, 250, 2 5/552 5/393 5/647
50, 250, 3 5/89 5/77 5/72
100, 100, 1 5/1 5/1 5/1
100, 100, 2 5/6 5/4 5/5
100, 100, 3 5/39 5/37 5/28
100, 200, 1 5/37 5/34 5/37
100, 200, 2 5/64 5/17 5/23
100, 200, 3 5/29 5/18 5/17
100, 500, 1 5/415 5/330 5/221
100, 500, 2 5/370 5/290 5/297
100, 500, 3 5/1473 5/829 5/555
200, 200, 1 2/2209 5/3036 4/1618
200, 200, 2 5/212 5/134 5/92
200, 200, 3 5/60 5/26 5/32
200, 400, 1 5/22 5/28 5/15
200, 400, 2 5/1642 5/1977 5/2447
200, 400, 3 5/1088 5/604 5/479
200, 1000, 1 5/965 5/728 5/635
200, 1000, 2 0 1/4537 4/3362
200, 1000, 3 5/1197 5/1065 5/1014

Table 6. Average time (rounded to seconds) used by the test computer to execute
succesful tests for some selected parameters. (Npte: Value 0 means that the average
time was less than half second.)

Table 1 Table 2 Table 3 Table 5
TP2(12,4) TP2(12,4) TP2(12,4) TP2(12,4) TP2(24,8) TP2(48,16)

10 ind. 20 ind. 10 individuals 10 individuals 10 individuals
LS’s applied in LS’s applied in each Combination of

L, N, No LS each generation third generation LS’s applied in
inst. no. LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4 each generation
50, 50, 1 0 1 0 0 0 0 0 0 0 0 0 0 0
50, 50, 2 0 1 0 0 0 0 0 0 0 0 0 0 0
50, 50, 3 0 1 0 1 1 0 0 0 0 0 0 0 0
50, 100, 1 1 1 1 0 0 2 1 0 0 1 1 0 1
50, 100, 2 1 2 1 1 2 2 1 1 1 2 2 2 3
50, 100, 3 3 3 1 2 7 10 1 2 3 4 1 3 3
50, 250, 1 16 20 28 16 16 39 22 14 11 21 40 35 42
50, 250, 2 51 56 24 38 34 97 26 35 30 50 68 70 132
50, 250, 3 18 20 18 9 17 25 10 8 13 14 15 16 19
100, 100, 1 0 1 0 0 0 0 0 0 0 0 0 0 0
100, 100, 2 0 1 0 0 0 0 0 0 0 0 0 0 0
100, 100, 3 0 1 0 0 0 1 1 0 0 0 1 1 1
100, 200, 1 8 12 10 3 8 9 6 3 8 7 5 5 7
100, 200, 2 2 3 1 3 2 4 1 3 1 4 4 1 2
100, 200, 3 1 3 4 1 2 26 2 1 1 2 2 2 2
100, 500, 1 187 236 170 130 149 384 94 145 244 228 269 294 271
100, 500, 2 295 309 242 241 298 333 169 306 151 228 236 260 480
100, 500, 3 484 575 326 509 416 775 296 390 355 461 1019 777 671
200, 200, 1 58 91 71 108 56 134 34 78 66 3471 146 270 202
200, 200, 2 5 6 11 7 7 14 11 7 10 9 13 11 9
200, 200, 3 2 3 4 1 2 2 4 1 1 4 4 2 3
200, 400, 1 12 11 4 6 5 25 6 7 5 14 8 11 7
200, 400, 2 238 286 N/A 195 163 484 N/A 171 161 296 479 686 1128
200, 400, 3 205 230 N/A 174 205 247 N/A 153 201 208 419 334 374
200, 1000, 1 1593 2173 3064 888 1347 2972 2307 811 1271 1865 2363 2087 2032
200, 1000, 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 19582 19977
200, 1000, 3 1489 1861 3298 1364 792 3548 2456 1135 1080 2023 2818 2770 2778

weight term. Every classical formula is in disjunctive normal form with at most
D disjuncts, while every disjunct is a conjunction of at most N literals. For every
weight term t coefficients are chosen, and the value of t is computed. Next, the
sum sp(t) of positive coefficients and the sum sn(t) of negative coefficients are

50 Z. Ognjanović, U. Midić, and N. Mladenović

computed. Finally, the right side value of the weight literals between sp(t) and
sn(t), and the relation sign are chosen such that f is satisfiable.

We have implemented some versions of GA-VND-PSAT. The variants differ
in the type of the mutation operator, the mutation probability, and the neigh-
borhood structure used within the VND-scheme. All results are averages over 5
independent trials for each problem instance.

All the tests were run on the Pentium P4(2.4GHz,512MB)-based Linux sta-
tion. We decided that it would be better to test more problem instances of
different sizes (even very large scale instances) rather than making more trials
on a smaller set of instances (of smaller or average size). Since the tests are of
large size, the necessity to perform them in a reasonable time imposed to set the
maximal number of generations to be: 10000 for N = 50, 7000 for N = 100 and
5000 for N = 200.

The results are summarized in the tables 1 - 5. Each table entry contains
the number of successful trials (out of 5) and the average number of generations
in successful trials. The first column in all tables contains the problem instance
data. TP1 and TP2, followed by two numbers, denote the type and the rate of
two-part mutation (see Section 3). The two numbers are the expected average
(per generation/individual) numbers of bit mutations in atoms and probabilities
parts, respectively.

Table 1 contains results of tests with no LS involved. Three central columns
show results for TP2 mutation, population of 10 individuals and three different
mutation rates. The second column on the left contains the results of tests with
TP1 mutation used instead of TP2. The rightmost column contains the results
with population of 20 individuals.

Comparison of columns 2 and 3 shows that, while with TP1 mutation the
solution was found in less generations (on average) than with TP2, on some
instances TP2 outperformed TP1. Comparison of columns 3 and 6 shows that
doubling the size of population did not increase the performance by same factor.

Due to these observations, we chose to use TP2 mutation and population of
10 individuals. The three central columns of Table 1 show the result for those
parameters, with three different mutation rates. For most instances, increasing
mutation rates did not give the expected results and has even deteriorated the
performance of GA.

Table 2 shows the results of applications of LS’s. A chosen LS is applied to
each individual, in each generation, and is repeated as long as it makes improve-
ment, i.e. until the d(M) for the individual decrease. If no improvement is made,
altered temporary individual is discarded, and the original is kept.

Table 2 can be compared to columns 3-6 of Table 1. Results show that - on
average as well as for ‘harder’ instances - LS3 gives the best results. That can be
explained by the fact that LS3 makes the smallest changes to an individual; it
tries to make an individual to satisfy the best bad literal. Note that increased mu-
tation rate increases average success rate and performance (in contrast with GA
with no LS). The ‘hardest’ instance (200, 1000, 2) was solved in one test, using

A Hybrid Genetic and Variable Neighborhood Descent for PSAT Problem 51

LS3. Also note that GA with LS1 performed much worse - for some instances -
than the pure GA.

The application of LS’s increases the computational time needed for one
generation cycle. We tried to decrease computational time, while keeping the
benefits of LS’s, by decreasing the use of LS’s. For the next set of tests, reported
in Table 3, we used an LS in each third generation cycle, instead of in each gen-
eration cycle. The average number of generations (needed to find a solution) was
not drastically increased (compare 179 to 135), while the success rate increased
(1514 successful tests compared to 1511). Instance (200, 1000, 2) was solved in
three tests, again using LS3.

The next set of tests was designed to analyze the contribution of the mutation
of the probabilities part to the algorithm. We eliminated that mutation by setting
the second parameter of TP2 mutation to 0. The probabilities part is reinitialized
(i.e. new random values are set in the same way as during the initialization of GA)
after each five generation cycle, to avoid local minima. The results are shown in
Table 4. Poor performance clearly indicates the importance of probabilities part
mutation. Different length of reinitialization period might give better results;
since this set of tests was much more time consuming than other tests, we decided
to leave that research direction for the future.

LS2 had the best average performance, when used alone. However, for some
test instances, another local searches show better performances. That is the rea-
son why the last set of tests involve a combination of all LS’s within the VND
scheme: in each generation, LS1 is applied to an individual (repeatedly, while it
makes improvement), followed by LS2, LS3 and LS4. LS’s are reapplied in a cy-
cle. The cycle is stopped when four consecutive LS’s make no improvement, i.e.
the particular individual can not be improved any more (using any of the four
LS’s). Results are shown in Table 5. Although this combination of LS’s increases
evaluation costs (per a generation cycle), it significantly increases the success
rates and decreases the number of generation cycles needed to find the solution.

The last table 6 contains the average running time of successful tests as
measured on our test computer. Table shows running times only for selected
tests, due to space limitations. Columns 2 and 3 show times for tests without
LS’s, with different population size (10 individuals vs 20 individuals). Increased
population size does result in smaller number of iterations needed to find the
solution, but the computational cost for each iteration is increased and the overall
computational cost is greater than with smaller population size. In columns 4-7
and 8-11 we can compare the efficiency of various LS’s. It is clear that LS2 and
LS3 are more efficient than LS1 and LS4 when used for large problem instances,
however it is not clear which of them is the most efficient. The running times in
columns 8-11 (LS’s applied in each third generation) are on average smaller than
times in columns 4-7 (LS’s applied in each generation). However, this does not
mean that the principle of reducing application of LS’s to each third generation
is always more efficient. Finally, columns 12-14 show execution times for tests
using combination of LS’s. Combined usage of LS’s is not justified in terms
of time efficiency, but it is justified in terms of increased success rate. Higher
mutation rate in this GA-VND setup leads to better time efficiency and higher
success rate, except for a few less complex problem instances.

52 Z. Ognjanović, U. Midić, and N. Mladenović

5 Conclusion

In this paper we have described and tested a hybrid GA and VND-based satisfi-
ability checker GA-VND-PSAT for probabilistic logic trying to make a trade-off
between completeness and computation time. We have performed some exper-
imental analysis and tested GA-VND-PSAT against GA-PSAT. The results of
our tests show both the higher success rate and the computational superiority of
GA-VND-PSAT. Although a careful implementation contributes to better prop-
erties of GA-VND-PSAT, the fact that GA-VND-PSAT outperforms GA-PSAT
is in the first place due to the new PSAT-specific operators and heuristics. GA-
VND-PSAT is able to solve PSAT-instances with the number of propositional
letters N = 200 and the number of weight literals L = 1000. We are not aware
of any larger PSAT-instances reported in the literature. For example, N = 50,
L = 70 in [9], N = 140, L = 300 in [8], L is up to 500 in [5], and N = 200,
L = 800 in [7]. Also, we note that the instances considered in the mentioned
papers have simpler form than ours, since there S, the maximal number of sum-
mands in weight terms, and D, the maximal number of disjuncts in DNF’s of
classical formulas, are set to be 1 and 4 (or 3), respectively (we have S = D = 5),
while the used classical formulas are clauses (i.e., disjunctions of propositional
letters and their negations - propositional literals). In other words, their weight
term contains the probability of only one clause with up to 4 propositional liter-
als. Nevertheless, GA-PSAT and GA-VND-PSAT are only the first steps in our
investigations, and there are many directions for further research. The first one
obviously concerns improving the problem specific GA-operators, and heuris-
tics used within the VND-schema. The next problem could be to see how our
GA-VND-approach performs on the so-called interval PSAT [5] in which weight
terms belong to intervals of probability, i.e., basic weight formulas are of the form
c1 ≥ t ≥ c2. Another interesting issue could be to consider how our GA-VND-
approach to PSAT can be extended for a more expressible version of probabilistic
logic which allows iteration of probabilistic operators [3,12] in which case PSAT
is PSPACE-complete, or for the framework of conditional probabilities. Finally,
our test-generating methods can be seen as a generalization of the standard
SAT-generating approach, but we have more parameters than in classical propo-
sitional logic. Our experiences show that increasing L leads to harder problems,
since L is the number of constraints. However, still we are not able to conjecture
any relation between N , L and the other parameters and the hardness of prob-
lems (for example, similar to the phase transition phenomenon for SAT). Thus,
it is clear that far more tests with a much greater number of problems and an
exhaustive study should be done.

References

1. Evolutionary computation, Vol. I, II, T. Baeck, D. B. Fogel, and T. Michalewicz
edts., Institute of Physics Publishing, Bristol and Philadelphia, 2000.

2. R. Fagin, J. Halpern, and N. Megiddo. A logic for reasoning about probabili-
ties.Information and Computation, 87:78–128, 1990.

A Hybrid Genetic and Variable Neighborhood Descent for PSAT Problem 53

3. R. Fagin and J. Halpern. Reasoning about knowledge and probability. Journal of
the ACM, 41(2), 340–367, 1994.

4. G. Georgakopoulos, D. Kavvadias, and C. Papadimitriou. Probabilistic satisfia-
bility. Journal of Complexity, 4(1):1–11, 1988.

5. P. Hansen, B. Jaumard, Probabilistic satisfiability. in Gabbay, Dov M. (ed.) et al.,
Handbook of defeasible reasoning and uncertainty management systems. Vol. 5:
Algorithms for uncertainty and defeasible reasoning. Dordrecht: Kluwer Academic
Publishers. 321–367, 2000.

6. P. Hansen, N. Mladenović, Variable neighborhood search, Fred in W. Glover and
Gary A. Kochenberger (edts.), Handbook of Metaheuristics,International Series in
Operations Research and Management Science, Vol. 57, Springer, 145–184, 2003.

7. P. Hansen, S. Perron. Merging the Local and Global Approaches to Probabilistic
Satisfiability, GERAD tech. report, 2004.

8. B. Jaumard, P. Hansen, and M. P. de Aragao. Column generation methods for
probabilistic logic. ORSA Journal on Computing, 3:135–147, 1991.

9. D. Kavvadias, and C. Papadimitriou. A linear programming approach to reason-
ing about probabilities. Annals of Mathematics and Artificial Intelligence, vol. 1,
No.1-4, 189–205, 1990.

10. N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71-87, 1986.
11. N. Mladenović, P. Hansen, Variable neighborhood search, Computers and Oper-

ations Research, vol. 24, no. 11, 1097–1100, 1997.
12. Z. Ognjanović and M. Rašković. Some first-order probability logics. Theoretical

Computer Science, 247(1-2):191-212, 2000.
13. Z. Ognjanović, J. Kratica, M. Milovanović. A genetic algorithm for satisfiability

problem in a probabilistic logic: A first report. LNCS 2143, 805 - 816, 2001.
14. Z. Ognjanović, U. Midić, J. Kratica. A genetic algorithm for probabilistic SAT

problem. LNCS 3070, 462–467, 2004.

A Hybrid Meta-heuristic Approach for Natural Gas
Pipeline Network Optimization

C. Borraz-Sánchez and R.Z. Rı́os-Mercado

Universidad Autónoma de Nuevo León, Graduate Program in Systems Engineering, AP 111 – F,
Cd. Universitaria, San Nicolás de los Garza, NL 66450, México

{conrado,roger}@yalma.fime.uanl.mx

Abstract. In this paper we propose a hybrid heuristic solution procedure for fuel
cost minimization on gas transmission systems with a cyclic network topology,
that is, networks with at least one cycle containing two or more compressor sta-
tion arcs. Our heuristic solution methodology is based on a two-stage iterative
procedure. In a particular iteration, at a first stage, gas flow variables are fixed in
each network arc and optimal pressure variables in each network node are found
via non-sequential dynamic programming. At a second stage, pressure variables
are fixed and a short-term memory Tabu Search procedure is used for guiding the
search in the flow variable space. Empirical evidence supports the effectiviness
of the proposed procedure outperforming the best existing approach to the best
of our knowledge.

Keywords: steady state, natural gas, transmission networks, non-convex prob-
lem, dynamic programming, tabu search.

1 Introduction

In this paper, we address the problem of minimizing the fuel consumption incurred by
compressor stations in a natural gas pipeline transmission system. During this process,
energy and pressure are lost due to both friction between the gas and the pipes’ inner
wall, and heat transfer between the gas and the environment. To keep the gas flowing
through the system, it is necessary to periodically increase its pressure, so compres-
sor stations are installed through the network. It is estimated that compressor stations
typically consume about 3 to 5% of the transported gas. This transportation cost is sig-
nificant because the amount of gas being transported in large-scale systems is huge. In
the other hand, even a marginal improvement in gas operations can have a significant
positive impact from the economic standpoint, so this provides the main motivation
from the practical side for the proposed work.

This problem is represented by a network, where arcs correspond to pipelines and
compressor stations, and nodes correspond to their physical interconnection points. We
consider two types of continuous decision variables: mass flow rates through each arc,
and gas pressure level at each node. So, from the optimization perspective, this problem
is modeled as a nonlinear program (NLP), where the cost function is typically nonlinear
and non-convex, and the set of constraints is typically non-convex as well. It is well

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 54–65, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Hybrid Meta-heuristic Approach for Natural Gas Pipeline Network Optimization 55

know that non-convex NLP is NP-hard [6]. This motivates the choice of the proposed
heuristic approach.

The state of the art on research on this problem reveals a few important facts.
First, there are two fundamental types of network topologies: non-cyclic and cyclic.
We would like to emphasize that, the former is a type of topology that has received
most of the attention during the past 30 years. Several methods of solution have been
developed, most of them based on Dynamic Programming (DP), which were focused
on non-cyclic networks.

In particular, as far as handling cyclic topologies is concerned, gradient search and
DP approaches have been applied with little or limited success. The main limitation of
the former is its local optimality status. The drawback of the latter, is that its applica-
tion is limited to problems where the flow variables are fixed, so the final solution is
“optimal” with respect to a pre-specified set of flow variables. This is because cyclic
topologies are a lot harder to solve.

In this paper, we proposed a novel solution methodology for addressing the problem
of how to optimally operate the compressor stations in a natural gas pipeline system,
focusing in cyclic topologies. The proposed technique combines a non-sequential DP
technique (originally proposed by Carter [2]) within a Tabu Search (TS) framework.
For the past twelve years, TS has established its position as an effective meta-heuristic
guiding the design and implementation of algorithms for the solution of combinatorial
optimization problems in a number of different areas (Glover and Laguna [5]). A key
reason for this success is the fact that the algorithm is sufficiently flexible to allow
designers to exploit prior domain knowledge in the selection of parameters and sub-
algorithms. In this case, even though we are dealing with a continuous optimization
problem, the high non-convexity of the objective function and the versatility of TS to
overcome local optimality make TS very attractive with an appropriate discrete solution
space.

Empirical evidence over a wide range of instances with data taken from industry
shows the efficiency of the proposed approach. A comparison with former approaches
which include GRG-based and state-of-the-art Carter’s DP technique demonstrates the
significant superiority of our procedure. Furthermore, in order to assess the quality of
the solutions delivered by our procedure, a lower bound procedure was derived. It is
shown that the optimality gaps found by our technique are less than 16%, most of them
less than 10%, which represents a significant progress to the current state of the art in
this area. The scientific contribution of this work is providing the best technique known
to date, to the best of our knowledge, for addressing this type of problem in cyclic
topologies.

The rest of this paper is organized as follows. In Section 2, we formally introduce the
fuel consumption minimization problem (FCMP), describing its main features, model-
ing assumptions, and important properties. Then, in Section 3, we present a review of
earlier approaches for this problem, highlighting the most related to our work, and how
we attempt to exploit some of them. The proposed methodology is fully described in
Section 4. An extensive computational evaluation of the heuristic, including compari-
son with earlier approaches, is presented in Section 5. Finally, we wrap up this work
with the conclusions and directions for future research in Section 6.

56 C. Borraz-Sánchez and R.Z. Rı́os-Mercado

2 Problem Description

Pipeline system models can be mainly classified into steady-state and transient systems.
The difference between the two is as follows. The flow dynamics through a pipeline is
ruled by a partial differential equation involving derivatives with respect to time. Under
a steady-state assumption, it is possible to work out this equation and reduce to a nonlin-
ear equation with no derivatives, which makes the problem a lot more tractable from the
optimization perspective. Like all those previous works (reviewed in Section 3), here
we assume a steady-state model. That is, our model provides solutions for systems that
have been operating for a relatively large amount of time, which is a common practice
in industry. Transient analysis has been done basically by descriptive models, so opti-
mization for transient systems remains as one of the great research challenges in this
area. We also assume we work with a deterministic model, that is, each parameter is
known with certainty, which is a very reasonable assumption. In terms of the compres-
sor stations, we assume we work with centrifugal compressor units, which are the most
commonly found in industry. As far as the network model is concerned, we assumed
the network is balanced, that is, no gas is lost, and that each arc in the network has a
pre-specified direction.

2.1 The Model

This model was originally introduced by Wu et al. [19].

Sets
V : Set of all nodes in the network
Vs: Set of supply nodes (Vs ⊂ V)
Vd: Set of demand nodes (Vd ⊂ V)
Ap: Set of pipeline arcs
Ac: Set of compressor station arcs
A: Set of all arcs in the network; A = Ap ∪ Ac

Parameters
Uij : Arc capacity of pipeline (i, j); (i, j) ∈ Ap

Rij : Resistance of pipeline (i, j); (i, j) ∈ Ap

PL
i , PU

i : Pressure lower and upper limits at each node; i ∈ V
Bi: Net mass flow rate at node i; i ∈ V . Bi > 0 if i ∈ Vs, Bi < 0 if i ∈ Vd,

Bi = 0 otherwise

Variables
xij : Mass flow rate in arc (i, j); (i, j) ∈ A
pi: Pressure at node i; i ∈ V

Formulation

(FCMP)

Minimize
∑

(i,j)∈Ac

gij(xij , pi, pj) (1)

subject to
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = Bi i ∈ V (2)

A Hybrid Meta-heuristic Approach for Natural Gas Pipeline Network Optimization 57

xij ≤ Uij (i, j) ∈ Ap (3)

p2
i − p2

j = Rijx
2
ij (i, j) ∈ Ap (4)

pi ∈ [pL
i , pU

i] i ∈ V (5)

(xij , pi, pj) ∈ Dij (i, j) ∈ Ac (6)

xij , pi ≥ 0 (i, j) ∈ A, i ∈ V (7)

The objective function (1) represents the total amount of fuel consumption in the sys-
tem. Constraints (2)-(3) are the typical network flow constraints representing node mass
balance and arc capacity, respectively. Constraint (4) represents the gas flow dynamics
in each pipeline under the steady-state assumption. Constraints (5) denote the pressure
limits in each node. These limits are defined by the compressor physical properties.
Constraint (6) represents the non-convex feasible operating domain Dij for compres-
sor station (i, j). Finally, the mathematical model is bounded by non-negative decision
variables (7). The algebraic representation of Dij is the result of curve fitting methods
based on empirical data taken from the compressors.

For measuring fuel consumption, we use a function gij in the following form:

g(xij , pi, pj) = αxij

{(
pj

pi

)m

− 1
}

, (xij , pi, pj) ∈ Dij ,

where α and m are assumed constant (and known) parameters that depend on the gas
physical properties. A more detailed study on the nature of both the compressor station
domain and the fuel consumption function is given in [19].

3 Previous Work

In this section, we review the most significant contributions over the last 30 years for
solving the FCMP.

3.1 Methods Based on Dynamic Programming

The key advantages of DP are that a global optimum is guaranteed to be found and that
nonlinearity can be easily handled. In contrast, its application is practically limited to
non-cyclic networks, such as linear (also known as gun-barrel) or tree topologies, and
that computation increases exponentially in the dimension of the problem, commonly
referred as the curse of dimensionality.

DP for pipeline optimization was originally applied to gun-barrel systems in the
late 1960s. It has been one of the most useful techniques due to both its computational
behavior and its versatility for handling non-linearity on sequential systems. DP was
first applied to linear systems by Wong and Larson [16] in 1968, and then applied to
tree-structured topologies by Wong and Larson [17]. A similar approach was described
by Lall and Percell [7] in 1990, who allow one diverging branch in their system.

The most significant work on cyclic networks know to date is due to Carter [2]
who developed a non-sequential DP algorithm, but limited to a fixed set of flows. In
our work, we use Carter’s ideas and incorporate them within a Tabu Search scheme for
iteratively adjusting the set of flows with great success. This will be further described
in Section 4.

58 C. Borraz-Sánchez and R.Z. Rı́os-Mercado

3.2 Methods Based on Gradient Search

In 1987, Percell and Ryan [11] applied a different methodology based on a Generalized
Reduced Gradient (GRG) non-linear optimization technique for non-cyclic structures.
One of the advantages of GRG, when compared with DP, is that they can handle the di-
mensionality issue relatively well, and thus, can be applied to cyclic structures. Never-
theless, being a method based on a gradient search, there is no guarantee for a global op-
timal soultion, especially when there are discrete decision variables. Villalobos-Morales
and Rı́os-Mercado [15] evaluated preprocessing techniques for GRG, such as scaling,
variable bounding, and choice of starting solution, that resulted in better results for both
cyclic and non-cyclic structures. More recently, Flores-Villarreal and Rı́os-Mercado [4]
performed an extensive computational evaluation of the GRG method over a large set of
instances on cyclic structures with relative success. No comparison to DP was done in
that work, so part of our contribution is to provide a comparison frame among Carter’s
NDP, GRG, and our method tested in the same set of instances.

3.3 Other Approaches

Wu, Boyd, and Scott [18] presented a mathematical model for the fuel cost minimiza-
tion on a compressor station with a single unit. It was the first work that fully addressed
the mathematical description of a centrifugal compressor. Later, Wu et al. [19] com-
pleted the analysis for the same problem, but considering several units within com-
pressor stations. In a related work, some of the most important theoretical properties
regarding pipeline networks are developed by Rı́os-Mercado et al. [13].

In a variation of this problem, Cobos-Zaleta and Rı́os-Mercado [3] recently pre-
sented a solution technique based on an outer approximation with equality relaxation
and augmented penalty algorithm OA/ER/AP for solving a mixed-integer non-linear
programming model, where an integer decision variable, representing the number of
compressor units running within each station, is incorporated. They present satisfactory
results as they were able to find local optima for many instances tested.

Optimization techniques have also been applied for transient (time dependent) mod-
els (e.g., Osiadacz [8], and Osiadacz and Swierczewski [10]), and network design (e.g.,
Osiadacz and Górecki [9]), with modest success. See Rı́os-Mercado [12] for more ref-
erences on optimization techniques applied to gas pipeline problems. It is important to
mention that optimization approaches developed to date work well under some gen-
eral assumptions; however, as the problems become more complex, the need arises for
further research and effective development of algorithms from the optimization per-
spective.

4 Solution Procedure

Basically, the proposed methodology consists of four components: (a) Preprocessing:
This phase is performed both to refine the feasible operating domain given by tightening
decision variable bounds, and to reduce the size of the network by a reduction technique
(motivated by the work of Rı́os-Mercado et al. [13]); (b) Finding an initial feasible
flow: In this phase, a set of feasible flows is found by two different methods: a classic

A Hybrid Meta-heuristic Approach for Natural Gas Pipeline Network Optimization 59

Fig. 1. Flowchart of NDPTS

60 C. Borraz-Sánchez and R.Z. Rı́os-Mercado

assignment technique and a reduced graph algorithm; (c) Finding an optimal set of
pressure values: In this phase, a set of optimal pressures (for the pre-specified flow in the
previous phase) is found by applying a non-sequential DP (NDP) algorithm; (d) Flow
modification: Here, an attempt to find a different set of flows is made by employing a
tabu search framework.

So the key idea of the procedure is to execute components (c) and (d) iteratively
until a stopping criteria is satisfied. As we know from theoretical properties of pipeline
networks [13], step (d) is unnecessary for non-cyclic topologies because there exists a
unique set of optimal flow values which can be determined in advance at preprocessing.
So, here we focus on cyclic topologies. For finding the optimal set of pressures in (c),
we implemented a NDP technique motivated by the work of Carter [2]. The overall
procedure is called NDPTS. Components (a), (b), and (c) are fairly well documented
in our previous work [1], so, in the reminder of this section, we assume we have an
initial feasible flow and provide a description of component (d), which is the core of the
proposed work.

4.1 Overall Procedure

Figure 1 shows a flow chart of the general solution procedure. Briefly, we start the
procedure by finding an initial feasible set of flows x by the NDP algorithm. Then a
list of neighbors of x, V (x), is generated. To build V (x) we take a mass flow rate in a
selected arc belonging to a cycle and modify it by increasing or decreasing its value by
Δx units. Note that once this value its set, the rest of the flow variables in the arc are
easily determined, so in this sense, it is precisely this mass flow rate which becomes the
attribute. Then the best x′ ∈ V (x) which is not tabu is chosen and the corresponding
subsets are updated accordingly. This process of local search and selection of best non-
tabu neighbor is repeated until a termination criteria is met.

4.2 Proposed Tabu Search

We define the nature of a feasible solution based on three basic components which
are directly related with a cyclic network topology: (a) static component, a mass flow
rate value not belonging to any cycle; (b) variable component, a mass flow rate value
belonging to a cycle; and (c) search component, all pressure variables in the network.
These components are depicted in Figure 2. The search space employed by TS is defined
by the flow variables xij only because once the rates are fixed, the pressure variables are
optimally found by NDP. Furthermore, we do not need to handle the entire set of flow
variables, but only one per cycle. This is so because once you fix a flow rate in a cycle,
the rest of the flows can be uniquely determined. Thus, a given state is represented by a
vector x = (xα1 , . . . , xαm), where αw is an arc that belongs to a selected cycle w.

Now, components of the proposed NDPTS procedure are briefly discussed.

Initial solution generation: To generate an initial solution, we use a two-phase pro-
cedure. First, a set of feasible flows are found and then an optimal set of pressures
(for the fixed set of flows) is found by the NDP algorithm [1].

A Hybrid Meta-heuristic Approach for Natural Gas Pipeline Network Optimization 61

Fig. 2. Basic components of a feasible solution on a cyclic topology

Neighborhood V (x): Let us define the neighborhood V (x) of a given solution x. By
definition, V (x) is a set of solutions reachable from x via a slight modification of
Δx units.

v(x) = {x′ ∈ R | x′ = x ± jΔx, j = 1, 2, . . . , Nsize/2} (8)

where Nsize its the predefined neighborhood size. Note that, for a given solution, we
do not store the entire solution but only the flow in the selected arc to be modified.

Tabu list: The Tabu List (TL) is used to keep attributes that created the best solution
in past iterations so that they can not be used to create new solution candidates. As
iterations proceed, a new attribute value enters in the TL and the oldest one, if it
exceeds the TL size, is released. Particularly, the size of TL is the control parameter
of TS. The size of TL that provided good solutions usually grows with the size of
V (x).

Termination Criteria: The search will terminate after iter max iterations, which is a
user-specified parameter.

5 Empirical Evaluation

The proposed TS was developed in C++ and run on a Sun Ultra 10 workstation un-
der Solaris 7. All of the compressor-related data, described in Villalobos-Morales et
al. [14], was provided by a consulting firm in the pipeline industry. For the tabu list size
and the neighborhood size, several preliminar experiments were done using values of
{5, 8, 10} and {20, 30, 40}, respectively. Because of space constraints a full description
of the fine-tuning experiment and the instances tested are available from the authors.
In preliminar computations for fine-tuning the procedure we have found the following
algorithmic parameters gave the best results:

62 C. Borraz-Sánchez and R.Z. Rı́os-Mercado

– Iteration limit (iter max = 100).
– Discretization size in V (x) (Δx = 5)
– Discretization size for pressure variables (Δp = 20)
– Tabu list size (Ttenure = 8),
– Neighborhood size (Nsize = 20)

In order to assess the effectiveness of the proposed procedures, we apply the algorithms
to solving several instances under different cyclic network topologies on the same plat-
form. For this, we carried out two experiments. In experiment A we present a compar-
ison between our procedure and the best GRG-based implementation known to date.
Experiment B compares our procedure with Carter’s NDP approach, which represents
the best DP-based approach known to date.

5.1 Comparative Analysis 1: NDPTS vs. GRG

Table 1 shows a comparison between the GRG and NDPTS on cyclic networks. For the
GRG we used the implementation in [4]. The first column shows the instances tested.
Here the ncm suffix means that the instance has n nodes and m compressor stations.
The second and third column show the GRG and NDPTS solution, respectively. The
last column shows the relative improvement of NDPTS over GRG.

Table 1. Comparison between GRG and NDPTS

Instance GRG NDPTS RI (%)

net-c-6c2-C1 2,312,548.24 2,288,252.53 1.05
net-c-6c2-C4 1,393,061.12 1,393,001.99 0.04
net-c-6c2-C7 1,988,998.79 1,140,097.39 42.67
net-c-10c3-C2 Not found 4,969,352.82 N/A
net-c-10c3-C4 5,610,932.12 2,237,507.93 60.12
net-c-15c5-C2 6,313,810.78 4,991,453.59 20.94
net-c-15c5-C4 3,555,353.60 3,371,985.41 5.15
net-c-15c5-C5 Not found 7,962,687.43 N/A
net-c-17c6-C1 Not found 8,659,890.72 N/A
net-c-19c7-C4 Not found 8,693,003.78 N/A
net-c-19c7-C8 Not found 7,030,280.45 N/A

First, the NDPTS was able to deliver solutions to all instances tested, whereas GRG
failed for five of these. The results indicate that NDPTS procedure outperforms GRG in
terms of solution quality. In terms of computational effort, GRG run in less than 2 sec.
while NDPTS run in a range of 270-400 seconds.

5.2 Comparative Analysis 2: NDPTS vs. NDP

We now present a comparative analysis showing the improvement achieved by the
NDPTS approach when compared with the simple NDP approach, Carter’s algorithm
which represents the current state-of-the-art. In Table 2, the first column shows the

A Hybrid Meta-heuristic Approach for Natural Gas Pipeline Network Optimization 63

Table 2. Comparison between NDP and NDPTS

Instance NDP NDPTS RI (%)

net-c-6c2-C1 2,317,794.61 2,288,252.53 1.27
net-c-6c2-C4 1,394,001.99 1,393,001.99 0.07
net-c-6c2-C7 1,198,415.69 1,140,097.39 4.86
net-c-10c3-C2 6,000,240.25 4,969,352.82 17.18
net-c-10c3-C4 2,533,470.72 2,237,507.93 11.68
net-c-15c5-C2 6,006,930.42 4,991,453.59 16.90
net-c-15c5-C4 3,669,976.44 3,371,985.41 8.11
net-c-15c5-C5 8,060,452.17 7,962,687.43 1.21
net-c-17c6-C1 9,774,345.45 8,659,890.72 11.40
net-c-19c7-C4 12,019,962.22 8,693,003.78 27.67
net-c-19c7-C8 8,693,003.78 7,030,280.45 19.12

instances tested, the second column shows the solution delivered by NDP, the third
column shows the best value found NDPTS, and the last column presents the relative
improvement percentage of NDPTS over NDP, that is:

gNDP − gNDPTS

gNDPTS
× 100%

As can be seen, the improvement of NDPTS over the DP, is larger than 10% on 6 of
11 tested instances, and larger than 2% in 8 of the 11 instances. In only one of them the
improvement is lower than 1%. The NDP runs in less than 20 sec.

5.3 A Lower Bound Comparison

To assess the quality of the solutions delivered by the algorithm it is necessary to derive
a lower bound. Now, deriving lower bounds for a non-convex problem can become a
very difficult task. Obtaining convex envelopes can be as difficult as solving the original
problem. However, for this problem we note two important facts that lead us to an ap-
proximate lower bound. First, by relaxing constraint (4) in model FCMP the problems
becomes separable in each compressor station. That is, the relaxed problem consists of
optimizing each compressor station individually. Now, this is still a non-convex prob-
lem, however, we exploit the fact that in each compressor, the objective is a function of
three variables only, so we build a three-dimensional grid on these three variables and
perform an exhaustive evaluation for finding the global optimum of the relaxed problem
(for a specified discretization).

Table 3 shows these results. The first column displays the instances tested, the sec-
ond and third columns show the lower bound and the best value found by the heuristic,
respectively, and the last column shows the relative optimality gap obtained by NDPTS.

As can be seen from the table, all of the tested instances have a relative optimality
gap of less than 17%, 7 out of 11 instances tested have a relative gap of less than 10%,
and 3 of these observed an optimality gap of less than 1%. This shows the effectiveness
of the proposed approach. Finally, although our NDPTS algorithm finds better solutions
than the GRG method or the simple NDP, it is more computationally expensive. In

64 C. Borraz-Sánchez and R.Z. Rı́os-Mercado

Table 3. Solution quality

Instance LB NDPTS Gap (%)

net-c-6c2-C1 2,287,470.58 2,288,252.53 0.03
net-c-6c2-C4 1,392,354.29 1,393,001.99 0.05
net-c-6c2-C7 949,909.48 1,140,097.39 16.68
net-c-10c3-C2 4,303,483.50 4,969,352.82 13.40
net-c-10c3-C4 2,015,665.98 2,237,507.93 9.91
net-c-15c5-C2 4,955,752.90 4,991,453.59 0.72
net-c-15c5-C4 3,103,697.48 3,371,985.41 7.96
net-c-15c5-C5 6,792,248.08 7,962,687.43 14.69
net-c-17c6-C1 8,129,730.11 8,659,890.72 6.12
net-c-19c7-C4 7,991,897.18 8,693,003.78 8.06
net-c-19c7-C8 5,897,768.92 7,030,280.45 16.10

general, any additional time leading to even small improvements can be easily justified
since the costs involved in natural gas transportation are relatively huge.

6 Conclusions

In this work we have proposed a hybrid heuristic based on NDP and TS for a very
difficult problem arising in the natural gas pipeline industry. The NDPTS implemen-
tation, based primarily in a short-term memory strategy, proved very successful in the
experimental work as it was able to deliver solutions of much better quality than those
delivered by earlier approaches. This represents, to the best of our knowledge, a signif-
icant contribution to the state of the art in this area of work.

There are still many areas for forthcoming research. The proposed procedure is a
basic short-term memory tabu search. It would be interesting to incorporate advanced
TS strategies such as intensification and diversification. In addition, one of the great
challenges in the industry is to address time-dependent systems from the optimization
perspective.

Acknowledgments. This research was supported by the Mexican National Council for
Science and Technology (CONACYT grant J33187-A) and Universidad Autónoma de
Nuevo León under its Scientific and Technological Research Support Program (UANL-
PAICYT grant CA820-04). We also would like to thank two anonymous reviewers
whose input helped improve the presentation of this paper.

References

1. C. Borraz-Sánchez and R. Z. Rı́os-Mercado. A non-sequential dynamic programming ap-
proach for natural gas network optimization. WSEAS Transactions on Systems, 3(4):1384–
1389, 2004.

2. R. G. Carter. Pipeline optimization: Dynamic programming after 30 years. In Proceedings
of the 30th PSIG Annual Meeting, Denver, October 1998.

A Hybrid Meta-heuristic Approach for Natural Gas Pipeline Network Optimization 65

3. D. Cobos-Zaleta and R. Z. Rı́os-Mercado. A MINLP model for minimizing fuel consumption
on natural gas pipeline networks. In Proceedings of the XI Latin-Ibero-American Conference
on Operations Research, Concepción, Chile, October 2002.

4. H. J. Flores-Villarreal and R. Z. Rı́os-Mercado. Computational experience with a GRG
method for minimizing fuel consumption on cyclic natural gas networks. In N. E. Mas-
torakis, I. A. Stathopulos, C. Manikopoulos, G. E. Antoniou, V. M. Mladenov, and I. F.
Gonos, editors, Computational Methods in Circuits and Systems Applications, pages 90–94.
WSEAS Press, Athens, Greece, 2003.

5. F. Glover and M. Laguna. Tabu Search. Kluwer, Boston, 1997.
6. R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global Optimization. Kluwer

Academic Publishers, Dordrecht, The Netherlands, 1995.
7. H. S. Lall and P. B. Percell. A dynamic programming based gas pipeline optimizer. In

A. Bensoussan and J. L. Lions, editors, Analysis and Optimization of Systems, volume 144 of
Lecture Notes in Control and Information Sciences, pages 123–132, Berlin, 1990. Springer-
Verlag.

8. A. J. Osiadacz. Dynamic optimization of high pressure gas networks using hierarchical
systems theory. In Proceedings of the 26th PSIG Annual Meeting, San Diego, October 1994.

9. A. J. Osiadacz and M. Górecki. Optimization of pipe sizes for distribution gas network
design. In Proceedings of the 27th PSIG Annual Meeting, Albuquerque, October 1995.

10. A. J. Osiadacz and S. Swierczewski. Optimal control of gas transportation systems. In
Proceedings of the 3rd IEEE Conference on Control Applications, pages 795–796, August
1994.

11. P. B. Percell and M. J. Ryan. Steady-state optimization of gas pipeline network operation. In
Proceedings of the 19th PSIG Annual Meeting, Tulsa, October 1987.

12. R. Z. Rı́os-Mercado. Natural gas pipeline optimization. In P. M. Pardalos and M. G. C.
Resende, editors, Handbook of Applied Optimization, chapter 18.8.3, pages 813–825. Oxford
University Press, New York, 2002.

13. R. Z. Rı́os-Mercado, S. Wu, L. R. Scott, and E. A. Boyd. A reduction technique for natural
gas transmission network optimization problems. Annals of Operations Research, 117(1–
4):217–234, 2002.

14. Y. Villalobos-Morales, D. Cobos-Zaleta, H. J. Flores-Villarreal, C. Borraz-Sánchez, and R. Z.
Rı́os-Mercado. On NLP and MINLP formulations and preprocessing for fuel cost minimiza-
tion of natural gas transmission networks. In Proceedings of the 2003 NSF Design, Service
and Manufacturing Grantees and Research Conference, Birmingham, January 2003.

15. Y. Villalobos-Morales and R. Z. Rı́os-Mercado. Preprocesamiento efectivo de un problema
de minimización de combustible en sistemas de transporte de gas natural. Revista Ingenierı́a
de Sistemas, 2005. Forthcoming.

16. P. J. Wong and R. E. Larson. Optimization of natural-gas pipeline systems via dynamic
programming. IEEE Transactions on Automatic Control, AC–13(5):475–481, 1968.

17. P. J. Wong and R. E. Larson. Optimization of tree-structured natural-gas transmission net-
works. Journal of Mathematical Analysis and Applications, 24(3):613–626, 1968.

18. S. Wu, E. A. Boyd, and L. R. Scott. Minimizing fuel consumption at gas compressor stations.
In J. J.-W. Chen and A. Mital, editors, Advances in Industrial Engineering Applications
and Practice I, pages 972–977, Cincinnati, Ohio, 1996. International Journal of Industrial
Engineering.

19. S. Wu, R. Z. Rı́os-Mercado, E. A. Boyd, and L. R. Scott. Model relaxations for the fuel cost
minimization of steady-state gas pipeline networks. Mathematical and Computer Modelling,
31(2–3):197–220, 2000.

Hybrid Tabu Search for Lot Sizing Problems

João Pedro Pedroso1 and Mikio Kubo2

1 DCC-FC and LIACC, Universidade do Porto,
Rua do Campo Alegre, 823, 4150-180 Porto, Portugal

jpp@ncc.up.pt
2 Supply Chain Optimization Lab.,

Tokyo University of Marine Science and Technology,
2-1-6 Etsuujima Koutou-ku, Tokyo 135-8533, Japan

kubo@e.kaiyodai.ac.jp

Abstract. This paper presents a hybrid tabu search strategy for lot
sizing problems. This strategy allows the exploitation of the quality of
the well-known relax-and-fix heuristic, inside a tabu search framework
which enforces diversity.

The computational results show an advantage of this strategy when
compared to a version of the relax-and-fix heuristic and to time con-
strained branch-and-bound.

1 Introduction

Lot sizing is a class of combinatorial optimization problems with applications in
production planning. In these problems there is a fixed number of periods, and
in each period production of items can occur in machines. A machine has to be
appropriately setup for being able to produce, and this setup implies, e.g., the
payment of a fixed cost, or the reduction of the machine working time by some
fixed amount.

The amount produced in a given period can be used to satisfy the demand of
that period, or remain in inventory. When production can also be used to satisfy
demand of preceding periods, the models are said to allow backlogging.

Lot sizing problems can be classified into small-bucket or big-bucket models.
On small bucket models, each machine can produce at most one item per period;
on big-bucket models, several items can be manufactured in each period.

Good surveys on lot sizing are provided in [3] and [6].

2 The Lot Sizing Model

The problem that we deal with in this paper is a lot sizing problem belonging to
the big bucket class: more than one setup is allowed per period, as long as the
machine capacities are respected.

The costs that are to be taken into account are setup costs, variable produc-
tion costs, and inventory and backlog costs. Unitary values for each of them can
vary from period to period.

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 66–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hybrid Tabu Search for Lot Sizing Problems 67

The decision variables in this lot sizing problem concern the manufacture or
not of a product in each period, as well as the amount to produce. The setup,
binary variable ypmt is 1 if product p is manufactured in machine m during
period t, and 0 otherwise. The continuous variable xpmt is the corresponding
manufactured amount.

Let T be the number of periods and T = {1, . . . , T}. Let P be the set of
products and M be the set of machines. Let furthermore Mp be the subset of
machines that are compatible with the production of p. The setup costs are then
determined by:

F =
∑
p∈P

∑
m∈Mp

∑
t∈T

fpmt ypmt, (1)

where fpmt is the cost of setting up machine m on period t for producing p.
Similarly, variable costs are

V =
∑
p∈P

∑
m∈Mp

∑
t∈T

vpmt xpmt, (2)

where vpmt is the variable cost of production of p on machine m, period t. If hpt

is the amount of product p that is kept in inventory at the end of period t, the
inventory costs can be determined by

I =
∑
p∈P

∑
t∈T

ipt hpt, (3)

where ipt is the unit inventory cost for product p on period t. Analogously, if gpt

is the amount of product p that failed to meet demand at the end of period t,
the backlog costs can be determined by

B =
∑
p∈P

∑
t∈T

bpt gpt, (4)

where bpt is the unit backlog cost for product p on period t. The lot sizing
objective can now be written as

minimise z = F + V + I + B. (5)

If the demand of a product p in period t is Dpt, the flow conservation con-
straints can be written as

hp,t−1 − gp,t−1 +
∑

m∈Mp

xpmt = Dpt + hpt − gpt ∀ p ∈ P , ∀ t ∈ T . (6)

The initial inventory and backlog for each product p should be assigned to hp0
and gp0, respectively (and possibly equivalent assignments might be made for
hpT and gpT).

There is a limit on the time that each machine is available on each period;
this implies that

∑
p∈P:m∈Mp

(
xpmt

γpm
+ τpmt ypmt

)
≤ Amt ∀ m ∈ M, ∀ t ∈ T . (7)

68 J.P. Pedroso and M. Kubo

In this equation, γpm is the total capacity of production of product p on machine
m per time unit, τpmt is the setup time required if there is production of p on
machine m during period t, and Amt is the number of time units available for
production on machine m during period t.

Manufacturing of a given product can only occur on machines which have
been setup for that product:

xpmt ≤ γpm Amt ypmt ∀ p ∈ P , ∀ m ∈ Mp, ∀ t ∈ T . (8)

The problem can be summarized as the following mixed-integer program
(MIP):

minimise z = F + V + I + B

subject to : F =
∑
p∈P

∑
m∈M

∑
t∈T

fpmt ypmt

V =
∑
p∈P

∑
m∈M

∑
t∈T

vpmt xpmt

I =
∑
p∈P

∑
t∈T

ipt hpt

B =
∑
p∈P

∑
t∈T

bpt gpt

hp,t−1 − gp,t−1 +
∑

m∈Mp

xpmt = Dpt + hpt − gpt, ∀ p ∈ P , ∀ t ∈ T

∑
p∈P:m∈Mp

(
xpmt

γpm
+ τpmt ypmt

)
≤ Amt, ∀ m ∈ M, ∀ t ∈ T

xpmt ≤ γpm Amt ypmt ∀ p ∈ P , ∀ m ∈ Mp, ∀ t ∈ T

F, V, I, B ∈ IR+

hpt, gpt ∈ IR+, ∀ p ∈ P , ∀ t ∈ T
xpmt ∈ IR+, ypmt ∈ {0, 1}, ∀ p ∈ P , ∀ m ∈ M, ∀ t ∈ T

(9)

3 Construction: Relax-and-Fix-One-Product

For the construction of a solution to the problem defined by Problem 9, we
consider partial relaxations of the initial problem, in a variant of the classic
relax-and-fix [8,9] heuristic.

In the basic form of the relax-and-fix heuristic, each period is treated in-
dependently. The strategy starts by relaxing all the variables except those of
period 1, thus keeping ypm1 integer and relaxing integrity for all other ypmt.
This MIP is solved, determining the heuristic values for variables ȳpm1 (i.e., the
binary variables of the first period). The approach then moves to the second
period. The variables of the first period are fixed at ypm1 = ȳpm1, the variables
ypm2 are integer, and all the other ypmt relaxed; this determines the heuristic

Hybrid Tabu Search for Lot Sizing Problems 69

value for ypm2. These steps are repeated, until all the y variables are fixed, as
described in Algorithm 1.

Algorithm 1: Relax-and-fix heuristic.
RelaxAndFix()
(1) relax ypmt,∀ p ∈ P , ∀ m ∈ M, ∀ t ∈ T , as continuous variables
(2) for t = 1 to T
(3) foreach p ∈ P
(4) foreach m ∈ Mp

(5) set ypmt as integer
(6) solve Problem 9, determining ȳpmt, ∀p ∈ P , ∀m ∈ Mp

(7) foreach p ∈ P
(8) foreach m ∈ Mp

(9) fix ypmt := ȳpmt

(10) return ȳ

This approach is reported to provide very good solutions for many lot sizing
problems. However, for large instances the exact MIP solution of even a single
period can be too time consuming. Therefore, we propose a variant were each
MIP determines only the variables of one period that concern a single product.
We call this approach relax-and-fix-one-product ; it is outlined in Algorithm 2
(were a random permutation of a set P is denoted by R(P)).

Algorithm 2: Relax-and-fix-one-product variant.
RelaxAndFixOneProduct()
(1) relax ypmt,∀ p ∈ P , ∀ m ∈ M, ∀ t ∈ T , as continuous variables
(2) for t = 1 to T
(3) foreach p ∈ R(P)
(4) foreach m ∈ Mp

(5) set ypmt as integer
(6) solve Problem 9, determining ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ

3.1 Solution Reconstruction

As we will see in the next section, the relax-and-fix-one-product construction
mechanism can be interestingly used in a different context: that of completing a
solution that has been partially destructed. For this purpose, all that is required
is to check if incoming ȳpmt variables are initialized or not; if they are initialized,
they should be fixed in the MIP at their current value. Otherwise, they are
treated as in previous algorithm: their are made integer if they belong to the
period and product currently being dealt, and relaxed otherwise. These ideas
are described in Algorithm 3 (we denote a random permutation of a set P by
R(P)).

70 J.P. Pedroso and M. Kubo

Algorithm 3: Relax-and-fix for solution reconstruction
Reconstruct(ȳ)
(1) for t = 1 to T
(2) foreach p ∈ P
(3) foreach m ∈ Mp

(4) if ȳpmt is not initialized
(5) relax ypmt

(6) else
(7) fix ypmt := ȳpmt

(8) for t = 1 to T
(9) foreach p ∈ R(P)
(10) U := {}
(11) foreach m ∈ Mp

(12) if ȳpmt is not initialized
(13) set ypmt as integer
(14) U := U ∪ {(p, m, t)}
(15) solve Problem 9, determining ȳpmt, ∀(p,m, t) ∈ U
(16) foreach (p, m, t) ∈ U
(17) fix ypmt := ȳpmt

(18) return ȳ

4 A Hybrid Tabu Search Approach

In this section we present a hybrid metaheuristic approach devised for tackling
the lot sizing problem. The approach is a two-fold hybrid, were relax-and-fix-
one-product is used to initialize a solution, or complete partial solutions, and
tabu search [2] is responsible for creating diverse points for restarting relax-and-
fix. Before each restart, the current tabu search solution is partially destructed;
its reconstruction is made by means of the relax-and-fix-one-product procedure
presented in Algorithm 3.

4.1 Solution Representation and Evaluation

In what concerns tabu search, the subset of variables of the Problem 9 which is
necessary to store is the set of ypmt variables; all the continuous variables can
be determined in function of these. Thus, a tabu search solution will consist of
a matrix of the ȳpmt binary variables.

The evaluation of a solution can be made through the solution of the Prob-
lem 9, with all the binary variables fixed at the values ȳpmt. As all the binary
variables are fixed, this problem is a linear program (LP). The value of z at the
optimal solution of this LP will provide the evaluation of the quality of ȳpmt.
The values of all the other variables x, h and g corresponding to ȳpmt are also
determined through this LP solution.

4.2 Tabu Search

The tabu search framework, presented in Algorithm 4, is based only on short
term memory. This procedure has a parameter, tlim, which is the limit of CPU

Hybrid Tabu Search for Lot Sizing Problems 71

to be used in the search (as an alternative to the usual stopping criterion, based
on the number of iterations). The remaining arguments are a seed for initializing
the random number generator, and the name of the instance to be solved.

Algorithm 4: Hybrid tabu search.
TabuSearch(tlim, seed, instance)
(1) store instance information as global data T ,P ,M, f, g, . . .
(2) initialize random number generator with seed
(3) ȳ := RelaxAndFixOneProduct()
(4) ȳ∗ := ȳ
(5) n := |T | × |P|
(6) Θ := ((−n, . . . ,−n), . . . , (−n, . . . ,−n))
(7) i := 1
(8) while CPUtime() < tlim
(9) ȳ := TabuMove(ȳ, ȳ∗, i, Θ)
(10) if ȳ is better than ȳ∗

(11) ȳ∗ := ȳ
(12) i := i + 1
(13) return ȳ∗

4.3 Neighborhood and Candidate Selection

In the course of a tabu search iteration, the neighborhood of the current solution
is searched as presented in sAlgorithm 5. The arguments of this algorithm are
the current solution ȳ, the best solution found ȳ∗, the current iteration i, and
the tabu matrix Θ.

Tabu information is kept in the matrix Θ, where Θpm holds the iteration
at which some variable ypmt has been updated. The tabu tenure is a random
value, drawn in each iteration between 1 and the number of integer variables and
stored in the variable d, on line 6 of Algorithm 5 (R[a, b] is the notation used for
a random integer with uniform distribution in [a, . . . , b]). If the current iteration
is i, a move involving product p and machine m will be tabu if i − Θpm ≤ d;
otherwise (i.e., if i − Θpm > d) it is not tabu. Making the tabu tenure a random
value simplifies the parameterization of the algorithm.

The neighborhood used consists of solutions where manufacturing a product
in a given period and machine is stopped, and its manufacture is attempted
in different machines, on the same period. Hence, for a given solution y we
start by checking, in a random order, what are the products which are be-
ing manufactured in the first period. Let us suppose that a product p is be-
ing manufactured in machine m, i.e., ypm1 = 1. The first neighbor is a solu-
tion where ypm1 = 0, all the other elements being equal to their equivalent
in y. Other neighbors have ypm′1 = 1 for all the machines m′ = m where
p was not being produced. After checking the first period, we check sequen-
tially the periods 2, . . . , T , as detailed in lines 2 to 20 of Algorithm 5. This
is, therefore, a composed neighborhood, where one or two moves are allowed.
On line 3, R(P) is the notation used for a random permutation of the set of
products P .

72 J.P. Pedroso and M. Kubo

Algorithm 5: Move during each tabu search iteration
TabuMove(ȳ, ȳ∗, i, Θ)
(1) ȳ′ := ȳ
(2) for t = 1 to T
(3) foreach p ∈ R(P)
(4) S := {m ∈ Mp : ȳpmt = 1}
(5) U := {m ∈ Mp : ȳpmt = 0}
(6) d := R[1, |P| × |M| × |T |]
(7) foreach m ∈ S
(8) fix ȳpmt := 0
(9) if ȳ is better than ȳ∗ or (i − Θpm > d and ȳ is better than ȳ′)
(10) return ȳ
(11) if i − Θpm > d and (ȳc is not initialized or ȳ is better than ȳc)
(12) ȳc := ȳ, m1 := (p, m, t)
(13) foreach m′ ∈ U
(14) fix ȳpm′t := 1
(15) if ȳ is better than ȳ∗ or (i − Θpm > d and ȳ is better than ȳ′)
(16) return ȳ
(17) if i−Θpm > d and (ȳc is not initialized or ȳ is better than ȳc)
(18) ȳc := ȳ, m1 := (p,m, t), m2 := (p, m′, t)
(19) restore ȳpm′t := 0
(20) restore ȳpmt := 1
(21) α := R
(22) un-initialize α% of the ȳc variables
(23) if ȳc is not initialized
(24) select a random index (p,m, t)
(25) ȳc := ȳ, ȳc

pmt := 1 − ȳpmt, Θpm := i
(26) else
(27) (p, m, t) := m1, Θpm := i
(28) if m2 is initialized
(29) (p,m, t) := m2, Θpm := i
(30) ȳ :=Reconstruct(ȳc)
(31) return ȳ

If a neighbor improving the best solution could be found, it is returned im-
mediately. A neighbor solution is immediately returned also if it is not tabu and
it improves the input solution (lines 9–10 and 15–16).

In the case that no improving move could be found in the whole neighbor-
hood, we force a diversification: the solution is partially destructed, as shown in
lines 21 and 22 (R is the notation used for a random real number with uniform
distribution in [0, 1]).

The best found move is then applied and made tabu (lines 27 to 29), and the
solution is reconstructed (line 30). Notice that this move is excluded from the
parts of the solution that are to be reconstructed.

Lines 23 to 25 prevent the case where the search is blocked, all moves being
tabu; in such a case, a random move is taken.

Hybrid Tabu Search for Lot Sizing Problems 73

5 Computational Results

The implementation of the hybrid tabu search is somewhat tricky, as it involves
the interaction with LP and MIP solvers; but for the MIP class of problems there
is no alternative. The programs were implemented in the Python language [7],
making use of an interface to the GLPK optimization library [4]. The program-
ming the code was written in just a few pages of code; it is available, together
with the mathematical programming model, in [5].

5.1 Practical Benchmarks

The strategies described in this paper were tested on a series of benchmark
instances. These instances have a random component, but are derived from a
real-world problem, where there are 12 products involved and the number of
periods is 12. We have produced an instance based on this full-size problem, and
smaller instances by reducing the number of periods and randomly selecting a
subset of products. The machines made available on smaller instances are those
compatible with the selected products, and the demand is randomly drawn, the
average being the true estimated demand.

The characteristics of the selected instances are presented in table 1; these
instances are available for downloading in [5].

Table 1. Names and characteristics of the instances used for benchmarking

Name Number of Number of Number of Number of Number of
periods products integers variables constraints

fri-02 2 2 20 56 45
fri-05 5 5 135 334 235
fri-07 7 7 210 536 369
fri-09 9 9 306 796 554
fri-12 12 12 492 1300 857

The results obtained both by the branch-and-bound solver available in the
GLPK kit and by the metaheuristics presented in this paper are presented in
table 2. In both the situations, the search was limited to a CPU time of one hour
in a computer running Linux 2.4.27-2-686, with an Intel Pentium 4 processor at
1.6 GHz.

Notice that as there is a random component on the relax-and-fix-one-product
heuristic, the solutions found can be different from run to run. However, due to
the structure of the costs on these instances, the solution is virtually always the
same.

5.2 Algorithm Behavior

For providing a deeper insight on the behavior of the algorithm, we also present
graphics of the evolution of the current solution with respect to the number of

74 J.P. Pedroso and M. Kubo

Table 2. Results obtained by the relax-and-fix-one-product heuristic, by the hybrid
tabu search, and by time-constrained branch-and-bound. Branch-and-bound and the
hybrid tabu search were limited to 3600 seconds of CPU time for each instance. (∗ fri-02

was solved by branch-and-bound to optimality in less that one second.)

Name Relax-and-fix (average) Hybrid tabu search sol. branch-and-
time (s) solution worst average best bound best sol.

fri-02 < 1 13.897 13.897 13.897 13.897 13.897∗

fri-05 1.4 49.904 48.878 48.878 48.878 48.878
fri-07 2.3 131.095 126.865 126.197 126.030 127.604
fri-09 4.6 213.405 209.201 208.303 207.640 235.125
fri-12 12.4 277.451 275.004 274.681 273.963 431.660

iterations, for a typical run. We have selected the instance fri-12, and analyzed
the evolution of the objective value of the current solution, z, as well as that of the
best solution, z∗. To illustrate the importance of the destruction/reconstruction
phase, we have plotted in figure 1 this evolution for the hybrid tabu search
algorithm, and also for pure tabu search, without that phase.

These graphics show the importance of the destruction/reconstruction phase,
as without it tabu search quickly moves from the initial (relax-and-fix-one-
product) solution into poor areas, and cannot easily reach good solutions again.
This is due to the fact that a large number of moves is required to change a good
solution into another good solution. Partial destroying the solution and recon-
structing it with the relax-and-fix-one-product heuristic can do the large number
of changes in the solution that is required to bring it to good places. This phase
is used whenever tabu search cannot find an neighbor improving the current
solution; if improving neighbors are found, the destruction/reconstruction cycle
is skipped.

On this run of the hybrid metaheuristic the number of iterations allowed in
the 3600 seconds CPU time was 178; on 164 of these the solution was destructed
and reconstructed with relax-and-fix-one-product. There were 10 improvements
on the best solution found; 1 was found stopping production in a machine on
the current solution, 7 were found starting production in a different machine,
and 2 were found on reconstruction. Although these values vary widely from
run to run and with the instance, in general there can be observed (as in this
case) solution improvements on both the neighborhood search and the destruc-
tion/reconstruction phase.

5.3 Other Benchmarks

Although the algorithm was designed for a specific application, as it encompasses
most of the relevant issues in big bucket lot sizing, it can be used with no
modification for other applications. We have selected some of the relevant (big-
bucket) benchmarks from the LOTSIZELIB [10], adapted them to allow backlog
(though at a very high penalty) and used hybrid tabu search to solve these
instances on the same computational setup used in section 5.1.

Hybrid Tabu Search for Lot Sizing Problems 75

 275

 276

 277

 278

 279

 280

 281

 0 20 40 60 80 100 120 140 160 180

ob
je

ct
iv

e
va

lu
e

number of iterations

Hybrid metaheuristic

current solution
best solution

 277

 278

 279

 280

 281

 282

 283

 284

 0 50 100 150 200 250 300 350 400

ob
je

ct
iv

e
va

lu
e

number of iterations

Pure tabu search

current solution
best solution

Fig. 1. Objective value as a function of the iteration number for the fri-12 instance.
The top graphic corresponds to the hybrid meta-heuristic; the bottom one corresponds
to pure tabu search, without the destruction/reconstruction steps. Both algorithms run
3600 seconds.

76 J.P. Pedroso and M. Kubo

Notice that by allowing backlog, we are making these benchmarks more dif-
ficult than the original ones.

Table 3. Results obtained by the relax-and-fix heuristic, by the hybrid tabu search,
and by time-constrained branch-and-bound on LOTSIZELIB instances. Branch-and-
bound and the hybrid tabu search were limited to 3600 seconds of CPU time for each
instance. Optimal solutions are as reported in [1]. (∗ indicate best known solutions,
optimality is not proven on these cases.)

Name Relax-and-fix (average) Hybrid tabu search sol. branch-and- optimal
time (s) solution worst average best bound best sol. solution

pp08a <1 7638.0 7380 7374 7360 7350 7350
rgna <1 82.2 82.2 82.2 82.2 82.2 82.2
set1ch 13.4 56024.3 55243.5 55089.6 54950 60517.7 54537
tr6-15 1.3 40767.6 38357 38238 38054 39388 37721
tr6-30 5.1 67057.0 63422 63246.2 63132 63711 61746∗

tr12-30 69.1 143014.0 137371 136762.8 136299 1940337 130599∗

6 Conclusion

The main motivation for this work was the exploitation of the quality of the
well-known relax-and-fix heuristic for lot sizing problems, in a setup which en-
forced diversity. This setup was provided by a tabu search mechanism, which was
responsible for imposing some changes on the solution. After these changes were
made, a part of the solution (not involving the latest changes) was destructed,
and relax-and-fix was used to rebuild it.

The reason why this was required as a complement to tabu search is that
non-improving moves made by tabu search rapidly force the solution into rather
poor regions, because a large number of moves is required to change a good so-
lution into another good solution. These “moves” were done by the relax-and-fix
heuristic whenever tabu search could not find an neighbor improving the current
solution. When improving neighbors were found, the destruction/reconstruction
cycle were skipped.

The computational results obtained with hybrid tabu search on a series of
benchmarks show a clear advantage of this strategy, as compared to the simple
relax-and-fix-one-product heuristic and to time-limited branch-and-bound.

This work has raised several issues, which remain as topics for future re-
search. The first is the assessment of the quality of the hybrid algorithm using
a specialized branch-and-cut system, as the one provided in [1], for the solution
of MIPs, instead of branch-and-bound. Another open question concerns limiting
the CPU used on each MIP solution; as most of the CPU is used for proving
optimality (which is not required in this context), limiting it would probably
lead to significant improvements.

The tabu search framework was designed with only short term memory. This
provided solutions which are good enough for the practical application to which

Hybrid Tabu Search for Lot Sizing Problems 77

the algorithm was designed, but if a deeper search is required it might be useful
to implement more sophisticated methods, including long term memory and
periodic restart from elite solutions.

References

1. G. Belvaux and Laurence A. Wolsey. Modelling issues and a specialized branch-
and-cut system bc-prod. Discussion Paper 9849, Center for Operations Research
and Econometrics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium,
1998.

2. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
1997.

3. R. Kuik and M. Salomon. Batching decisions: Structure and models. European
Journal and Operational Research, 75:243–260, 1994.

4. Andrew Makhorin. GLPK – GNU Linear Programming Kit. Free Software Foun-
dation, http://www.gnu.org, 2005. Version 4.8.

5. João P. Pedroso. Hybrid tabu search for lot sizing problems: an implementa-
tion in the Python programming language. Internet repository, version 0.1, 2005.
http://www.ncc.up.pt/˜jpp/lsize.

6. Yves Pochet and Laurence A. Wolsey. Algorithms and reformulations for lot sizing
problems. In DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, volume 20, pages 245–293, 1995.

7. Guido van Rossum et al. Python Documentation. PythonLabs,
http://www.python.org, 2005. Release 2.3.5.

8. Mathieu Van Vyve and Yves Pochet. General heuristics for production planning
problems. INFORMS Journal on Computing, 16:316–32, 2004.

9. Laurence Wolsey. Integer Programming. John Wiley & Sons, 1998.
10. Laurence A. Wolsey. LOTSIZELIB. Internet repository, version 3.0, 1996.

http://www.core.ucl.ac.be/wolsey/lotsizel.htm.

Fast Ejection Chain Algorithms for
Vehicle Routing with Time Windows�

Herman Sontrop1, Pieter van der Horn1, and Marc Uetz2

1 Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven,
The Netherlands

{Herman.Sontrop, Pieter.van.der.Horn}@philips.com
2 Maastricht University, Quantitative Economics, P.O. Box 616,

6200 MD Maastricht, The Netherlands
M.Uetz@ke.unimaas.nl

Abstract. This paper introduces a new algorithm, based on the con-
cept of ejection chains, to effectively target vehicle routing problems
with time window constraints (VRPTW). Ejection chains create pow-
erful compound moves within Local Search algorithms. Their potential
to yield state of the art algorithms has been validated for the traveling
salesman problem (TSP), for example. We show how ejection chains can
be used to tackle the more general VRPTW as well. The yardstick behind
ejection chain procedures is the underlying reference structure; it is used
to coordinate the moves that are available for the Local Search algorithm
via a given set of transition rules. Our main contribution is the intro-
duction of a new reference structure, generalizing reference structures
previously suggested for the TSP. The new reference structure, together
with a set of simple transition rules, is tailored to handle the asymmetric
aspects in a VRPTW. We use Tabu Search for the generation of the ejec-
tion chains, and on a higher algorithmic level, the ejection chain process
is embedded into an Iterated Local Search algorithm. Computational re-
sults confirm that this approach leads to very fast algorithms, showing
that ejection chain algorithms have the potential to compete with state
of the art algorithms for the VRPTW.

1 Introduction

Recently, it has been shown that so-called Stem & Cycle ejection chain pro-
cedures can compete with state of the art implementations of the famous Lin-
Kernighan algorithm [10] for solving large scale traveling salesman problems;
see, e.g., [5]. This is remarkable, since Lin-Kernighan type algorithms had domi-
nated this field for the last decades. Ejection chain procedures explicitly identify
a so-called reference structure. This is a structure similar to, but slightly differ-
ent from a solution, for example by violating certain types of constraints. Via a
set of predefined transition rules, moves are generated from feasible solutions to

� This research was performed on behalf of the Centre for Quantitative Meth-
ods, CQM BV, P.O. Box 414, 5600 AK, Eindhoven, The Netherlands.

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 78–89, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fast Ejection Chain Algorithms for Vehicle Routing with Time Windows 79

reference structures, from one reference structure to another, and back from ref-
erence structures to solutions. This way the reference structure, together with the
transition rules, define the moves that are available for a Local Search algorithm.

We address the vehicle routing problem with time window constraints (VRP-
TW). Given is a number of customers in the plane, with demands, a given service
or delivery time, and a fleet of identical vehicles with known limited capacities.
We are asked to find a set of routes starting and ending at a central depot, such
that each client is served by exactly one vehicle. Clearly, any route must not
violate the capacity constraints of the vehicle. In addition, each client must be
serviced within its so-called time window. The time window specifies an earliest
and a latest time at which the delivery must begin. If a vehicle arrives at a
customer before the opening of the time window, the vehicle will have to wait.
Arriving after the end of the time window is not allowed. Two different solutions
with the same number of vehicles are usually ranked by the total distance trav-
elled by the vehicles (sometimes, also the waiting time is taken into account).
The objective considered in this paper is the total distance travelled by the vehi-
cles, utilizing as many vehicles as required. We opted for this objective in order
to be able to compare our results to known optimal solutions, which have been
obtained using the same objective. In addition, we also experimented with a
slightly modified approach where the usage of vehicles is penalized, in order to
primarily drive down the number of vehicles1.

The VRPTW has been extensively studied. The best exact procedures can
still only handle small instances, small being in the order of 50–100 customers [16].
Meta-heuristic procedures mostly minimize the number of vehicles, and among
solutions with the same number of vehicles, prefer those with small total distance
travelled. Since the overall literature is extensive, we refer to [16] for a thorough
introduction into vehicle routing in general, and many references. For concepts of
Tabu Search, Simulated Annealing and other meta-heuristics, we refer to Aarts
and Lenstra [1]. As a matter of fact, Tabu Search based procedures are the ma-
jority among the most effective algorithms for VRPTW, see, e.g., [14,17,9], but
also other meta-heuristic frameworks proved to be effective; see [16].

The starting point of our research, motivated by practical interest, was the
idea to generalize state of the art algorithms for the traveling salesman problem
to the more general vehicle routing problem with time windows, in order to
obtain good solutions very quickly. Previous research on the TSP has shown
that Local Search algorithms –both Lin-Kernighan (LK) algorithms and Stem
& Cycle (SC) ejection chain algorithms– are very effective when the available
moves include the reversal of (sub)paths. However, this is generally not true for
settings with time window constraints, because path reversals introduce time
window violations. In this respect, it was already suggested by Glover in [7]
that an augmentation of the SC reference structure, the Doubly Rooted (DR)
reference structure, is more suitable for the asymmetric TSP.

1 Clearly, these objectives are correlated. When the capacities of the vehicles are large,
however, solutions with less vehicles may lead to a larger total distance.

80 H. Sontrop, P. van der Horn, and M. Uetz

Departing from this observation, our main contribution is a new reference
structure for the VRPTW, generalizing Glovers DR reference structure for the
TSP, that particularly targets the asymmetric nature of the VRPTW by avoiding
path reversals. This reference structure lies at the heart of an ejection chain
procedure that is based on Tabu Search. In addition to providing a new reference
structure, a novelty in our contribution is also a study of different meta-heuristics
that are used to steer the generation of ejection chains. (So far, ejection chain
studies have mainly focused on the lower level of control, the ejection chain
process itself.) It turned out that Iterated Local Search performed extremely well
in terms of speed and solution quality. Our computational results on established
standard test sets from Solomon [15] confirm that the resulting hybrid meta-
heuristic is indeed fast and effective.

2 Ejection Chains and Reference Structures

Most heuristics directly move from one solution to another. A different approach
is to first move to intermediate structures, reference structures, before moving
to another solution. In such procedures a certain amount of infeasibility is intro-
duced to the initial solution, which has to be ‘ejected’ in order to end up with
a new feasible solution, usually called a trial solution in this context. The ejec-
tion of infeasibility can be delayed by moving to other reference structures first,
creating a chain effect. At each level of such a chain, trial solutions are avail-
able by ejecting the infeasibility. Hence the term ejection chain. In the words of
Glover [7], ‘ejection chain procedures are based on the notion of generating com-
pound sequences of moves, leading from one solution to another, by linked steps
in which changes in selected elements cause other elements to be “ejected from”
their current state, position or value assignment’. The yardstick behind such
ejection chains is the underlying reference structure, which is a structure that
resembles a solution, but is infeasible with respect to some of the constraints.
The key idea is to introduce infeasibility by allowing certain vertices to have odd
degrees, something that is not possible in a feasible VRP solution. The general
structure of an ejection chain is depicted in Figure 1. In the example we see an
ejection chain of five levels. Starting from a solution S we introduce a certain
amount of infeasibility via move 1 resulting in reference structure R1. From R1
we can either eject the sustained infeasibility (move 1∗) or replace it by some
other infeasibility (move 2). Obviously such a construction can be repeated, cre-
ating a chain. One can a priori set a maximum depth (in this case 5) and select

Fig. 1. Ejection chain example

Fast Ejection Chain Algorithms for Vehicle Routing with Time Windows 81

the best trial solution seen in the chain. In this example the resulting compound
move implicated by the chain consists of moves 1–2–3–4–4∗.

2.1 The Constrained Doubly Rooted Reference Structure

It can be considered both a strength and a weakness of state of the art TSP
procedures that certain types of moves require a path reversal, i.e., the reversal
of a sub path of the tour. In the absence of (tight) time windows, path reversals
are an important building block of powerful moves. In the presence of time
windows, however, path reversals often violate time windows, especially if the
time windows are tight. Therefore, our idea to create an ejection chain procedure
for the VRPTW is to have a reference structure that still provides a strong
connectivity between solutions, but does not rely on path reversals in order to
generate moves.

The reference structure we propose supersedes both the stem & cycle (SC)
reference structure and the doubly rooted (DR) reference structure of Glover [7].
Figure 2 shows an instance of the SC structure. It is a spanning subgraph that
consists of one cycle and a path. The path is called the stem, the end of the stem
is called the tip. The vertex that is shared by the cycle and the stem is called
the root. Note that the root and the tip have odd degrees, hence the reference
structure does not represent a feasible solution to the problem. Figure 3 shows

Fig. 2. SC Fig. 3. DR Fig. 4. Flower Fig. 5. CDR

a DR reference structure. It may be conceived as arising from an SC by adding
an arc (t, j) which connects the tip to an arbitrary node j on the cycle. Again,
this results in a structure that has two vertices that have odd degrees. In [7]
Glover refers to both these vertices as roots. Glover shows that the DR structure
has several advantages over the SC structure. He proves a connectivity result
showing that the DR allows for more direct trajectories between solutions. Most
important is that the connectivity result also holds for asymmetric problems.
This is the main reason to base our new reference structure on the DR concept.
In addition, the DR structure provides access to moves unavailable to an SC
structure. Rego [13] generalizes the SC into the Flower reference structure2,
depicted in Figure 4. As can be seen it is an SC structure joined with multiple
cycles. The intersection of the cycles is called the core. An SC structure can
also be seen as a (trivial) Flower. The Flower concept proved to be very fruitful
for VRP problems without time windows. The reference structure we propose
is closely related to both the DR structure and the Flower concept. It may be
2 Rego [13] refers to the vertex t as the root. We use the term tip as in [7], however.

82 H. Sontrop, P. van der Horn, and M. Uetz

conceived from a Flower by adding an arc (t, j) which connects the tip to an
arbitrary node j on a cycle, and is shown in Figure 5. We call it a Constrained
Doubly Rooted reference structure (CDR). We use the word ‘constrained’ since
the core, the depot vertex, always represents one of the roots. In Section 5 we
briefly discuss an even more general, unconstrained version of the CDR. Note
that a CDR, too, has two vertices that have odd degrees. We will refer to the
vertex that represents the depot as the core, denoted by c. The other vertex with
an odd degree is called the root, denoted by r. A vertex v such that the arc (v, r)
exists is called a subroot. Note that when we eject such an arc (v, r) we obtain
the Flower structure, therefore v could also be called an implicit tip.

2.2 Transition Rules

In order to exploit the reference structure, we need three types of transition
rules. S-rules generate a CDR from a given start solution, E-rules generate one
CDR from another, and T -rules generate a trial solution from a CDR. We state
five simple transition rules that turn out to be sufficient.

S1-rule (Solution to CDR)
Eject (s, c)
Add (s, j) where j = c
and j not on path c → s

(s = 4, j = 2)

S2-rule (Solution to CDR)
Add (c, p) where p = c
Eject (q, p) where q is the predecessor of p
Add (q, j) where j = c and j = p
and j not on path c → q (p = 1, q = 4, j = 2)

E1-rule (CDR to CDR)
Eject (s, r) where s = c
Add (s, j) where j = r and j = c
and j not on path c → s

(s = 4, r = 2, j = 3)

T1-rule (CDR to Solution)
Eject (s, r) where s = c
Add (s, j) where s = j
Eject (c, j)

(s = 4, r = 2, j = 1)

T2-rule (CDR to Solution)
Eject (s, r)
Add (s, c)

(s = 1, r = 2)

Fast Ejection Chain Algorithms for Vehicle Routing with Time Windows 83

None of these rules involves a path reversal. The moves, however, can easily
be adapted to include path reversals, if desired. In the figures, the core c is always
the lowest vertex, and the root, if present, is displayed shaded. Returning to the
example in Figure 1, move 1, would of type S, moves 2, 3, 4 and 5 of type E
and moves 1∗, 2∗, 3∗, 4∗ and 5∗ would be of type T .

In principle, during the construction of an ejection chain, we always would
like to compute the best possible move when using these rules. However, in order
to speed up the procedure, whenever an arc is added in any of these rules, we
do not check every possible arc, but restrict us to those arcs (v, w) that seem
promising. To this end, we require that either vertex w must be a direct neighbor
of vertex v in the Delaunay triangulation of the set of customers of the underlying
instance3, or (v, w) is one of the 12 shortest arcs leaving v such that this arc
does not imply a time window violation on its own. (No conditions are placed on
arcs that involve the depot vertex.) This proved to constitute a good candidate
list for our test sets. Let us call a move, i.e., the application of a rule together
with the selection of leaving and entering arcs, admissible if one of the above
conditions for the entering arc is satisfied4.

2.3 Ejection Chain Construction

The construction of an ejection chain now works as follows. Starting from a given
solution, among all admissible S-moves, we select the one that leads to the best
possible CDR. Then, we chain a sequence of E-moves from CDR to CDR in the
same way, where ejected arcs are declared tabu for the remainder of the ejection
chain. The chain is generated until either no more admissible E-moves exist that
are not tabu, or a predefined maximum depth of the ejection chain is reached.
From every single CDR, we generate all possible trial solutions using admissible
T -moves. The aspiration criterion of the Tabu Search we use allows previously
ejected arcs to be available in T -moves. Eventually, the compound move consists
of moving to the best trial solution that has been generated.

In order to be able to move to the ‘best’ admissible CDR structure for any
S- or E-transition, we must decide on the quality of a CDR reference structure
(recall that it does not represent a feasible solution). To this end, we associate
a simple cost function with the CDR reference structure, by just counting the
total length of arcs included in the structure, incremented by a penalty term for
the total time window violations of the implicit routes. For example, in Figure 5,
we can distinguish three implicit routes: the two cycles as seen in Figure 4 and
the route starting in c, via t and r back to c.

Finally, it is important to realize that the final algorithm generates several
ejection chains after another. Each ejected arc is therefore not only declared tabu
for the remainder of the given ejection chain, but all arcs ejected in one ejection
chain are declared tabu also for the next θ ejection chains considered by the
3 See [6] for definitions regarding Delaunay triangulations.
4 Glover uses slightly stricter conditions, so-called legitimacy conditions, to determine

the arcs that are susceptible to being added or ejected, see [7]. The same legitimacy
conditions have also been adopted by Rego [13].

84 H. Sontrop, P. van der Horn, and M. Uetz

algorithm, where θ is a randomized parameter that is explained in more detail
in Section 4. We observed that the procedure performed significantly better if
all arcs ejected in the chain were declared tabu, instead of declaring tabu only
the ejected arcs involved in the compound move. Apparently the ejected arcs in
the remainder of a chain constitute so-called critical event memory of the Tabu
Search process, see [8].

3 Higher Level Meta-heuristics

Ejection chain procedures are able to manipulate multiple solution components
within a single compound move, as explained in the previous section. Based on
the theory developed by Glover [7] for the DR reference structure, the CDR-
structure proposed in this paper is conjectured to provide a strong form of con-
nectivity between any two solutions. Therefore, a search can (and indeed did)
easily get stuck in a so-called basin of attraction, see [11]. Hence we need a mech-
anism that will provide an escape trajectory from such a basin. We considered
Simulated Annealing (SA) as well as Iterated Local Search (ILS) to steer the
generation of ejection chains. SA requires that neighbor generation and feasibil-
ity checking is fast. We experimented with two SA designs, one that returned the
best trial solution to an SA process and one that returned all trial solutions to an
SA process. In our view, however, the generation of neighbors via ejection chains
is too costly for SA to work well. Preliminary testing confirmed our conjecture.
In great contrast, the use of ILS in combination with tabu driven ejection chains
proved to be very successful. Therefore we restrict further discussions to our
experiments using ILS.

3.1 Iterated Local Search

A simple, yet surprisingly effective technique is to apply an Iterated Local Search
strategy, see [11,2]. We propose an ILS where the embedded heuristic is based on
tabu controlled ejection chains and uses random vertex ejections as kick moves.
From a given start solution S1 a basic ILS scheme can be stated as follows:

Apply a kick move on S1 yielding S2.
Perform a Local Search on S2 resulting in S3.
Choose whether or not to accept S3.
If S3 is accepted restart from S3, otherwise restart from S1.

We refer to the solution on which the kick move is performed as the center
solution. We propose the random ejection of a single vertex v as a kick move. The
ejected vertex v will form a new route on its own, while we link v’s predecessor
to its successor. Note that this kick move never introduces infeasibility. One
of the main strengths of our procedure is its ability to merge routes in a way
similar, but much more efficient, than the well known Clark & Wright savings
procedure [3]. Therefore creating single vertex routes presents no problems. In
fact, the kick move makes it much easier for our procedure to find new moves,
since ejecting vertices always creates more ‘freedom’ in existing routes. Note

Fast Ejection Chain Algorithms for Vehicle Routing with Time Windows 85

that, through the objective, the procedure is strongly biased to decrease the
number of routes, so creating a new route by ejecting a vertex through a kick
is a move not likely to be made by the procedure otherwise, even though the
kick move is available as a forced combination of an S2- and T 2-move. We thus
follow the view expressed in [12], namely that a kick move should correspond to
a modification of the structure that is not easily accessible to the moves already
available or is unlikely to be chosen by the procedure itself. Since we use Tabu
Search, instead of strict Local Search, the kick move is temporarily ‘irreversible’,
thus the procedure is forced to find an alternative way to repair the sustained
‘damage’ obtained from the kick move. Algorithm 1 summarizes our proposed
approach.

Generate Initial Solution1
while n < MaxNrOfIterations do2

while Depth < Maximum depth do3
Move to best available CDR reference structure4
Determine best available trial solution5
Depth++6

end7
Determine best trial solution over current ejection chain8
Update best known solution and center solution9
n++10
if n mod KickFrequency = 0 then11

Return to center solution12
Apply kick move13

end14
if No improvement found for α iterations then15

Apply diversification move16
end17

end18
Algorithm 1: ILS Ejection Chain Procedure

Ejection chains are generated in lines 3–10. The maximum depth for an
ejection chain was 50. Lines 11–14 describe the kick procedure; the kick move was
performed every 5 iterations. Frequently performing a low strength kick worked
best. Ejecting more than one vertex per kick move proved unsuccessful. Our ILS
procedure only accepts improvements. Of course, other acceptance criteria could
be used, see [4,11]. The behavior of the ILS procedure is such that, in a sense, we
always try to stay close to the current best solution value. This is in line with the
so-called Pyramid Principle, as stated by Glover [8]. Finally, lines 15–17 provide a
diversification measure that takes effect when the ILS itself is unable to improve
solutions for a pre-specified number of iterations. To this end, recall that, after
each ejection chain, all ejected arcs involved in S- and E-rules are declared tabu
for an additional θ ejection chains, where θ is randomly drawn from the interval
[10, 30]. The ejected arcs involved in the final T -move are also declared tabu. As
a diversification measure, we increased this interval to [70,100] for 100 iterations,
if the procedure did not find an improvement for 1000 subsequent iterations. No
kick moves are performed during these 100 iterations. The diversification move
ends by declaring the best solution in the 100th ejection chain as the new center
solution.

86 H. Sontrop, P. van der Horn, and M. Uetz

4 Computational Results

We present results for two versions of the algorithm, one that minimizes total
distance only (DIST), irrespective of the number of vehicles used, and one that
also minimizes total distance, but simultaneously penalizes the use of vehicles
in the objective function (VEH). The second version was implemented to be
able to compare with other heuristics, since they, in contrast to exact methods,
primarily focus on minimization of vehicles.

Table 1 shows the computational results on the Solomon VRPTW test in-
stances with 100 clients [15]. For some instances the global minimum distance
is known [16], in which case we include the corresponding values in the col-
umn labelled ‘Global Optima’. The table further shows, per instance, the ARO
(discussed below), the results of the two variants of our algorithm, showing re-
spectively the number of vehicles, total distance, and time (in seconds) when the
best solution was found, as well as the solutions of another Tabu Search based al-
gorithm (see below). Both versions of the algorithm share the same design, they
only differ in the utilized objective function. We used trivial start solutions, in
which each client forms an individual route. The algorithms were run for 10
minutes per instance, resulting in an average number of some 300,000 ejection
chains per instance. The algorithm is coded in C++, using the Microsoft Visual
C++ .NET compiler (2003), on a 2.8Ghz Pentium 4 processor, with 1GB RAM.

The results of Table 1 confirm that the algorithm gets close to the optimal
solutions. For instances for which global optimal values are available, the results
are on average 0.99% away from the global optimum. These values were found
after 170 seconds on average (for the version that minimizes total distance,
DIST). When we terminate the same algorithm after 60 seconds, the solutions
are 1.67% away from the optimum, on average. Although the method is designed
to minimize distance, we were able to obtain reasonable results for minimizing
the number of vehicles, too, when we biased the objective function. We compare
our results to those of another tabu implementation by Rochat and Taillard [14].
In a review of VRPTW designs in [16] from 2002, the results obtained by this
method are referred to as excellent. It can be concluded that the algorithm
labelled VEH compares reasonably to Rochat and Taillards results. It results in,
on average, half a vehicle more, however with less total distance.

The column labelled ARO displays the average relative overlap (ARO) of any
two time windows5. We observed that, on average, when the procedure performs
worse in terms of solution quality and/or time required to find good solutions,
the ARO is high. This makes sense, since a high ARO implies that the instance
more closely resembles a VRP without time windows, while our procedure is
explicitly designed for settings in which the time windows are tight. In fact, in
settings with a lot of overlap between time windows, path reversals might be
useful. But as a tribute to time windows, path reversals are explicitly excluded
in our algorithm design.

5 ARO = 100 · i j>i

Overlapij

|TWi| + Overlapij

|TWj | /(n(n − 1)), where |TWi| is the length
of time window i and n is the number of clients (the depot is not considered a client).

Fast Ejection Chain Algorithms for Vehicle Routing with Time Windows 87

Table 1. Results on the Solomon VRPTW instances with 100 clients

Solomon 100 EC MIN DIST EC MIN VEH R-T [14] Global Optima
SET ARO VEH DIST TIME VEH DIST TIME VEH DIST VEH DIST
C101 6 10 828.9 1.2 10 828.9 0.3 10 828.9 10 827.3
C102 29 10 828.9 9.5 10 828.9 41 10 828.9 10 827.3
C103 53 10 828.1 28.7 10 828.1 312.5 10 828.1 10 826.3
C104 76 10 829.0 378 10 840.0 390.8 10 841.6 10 822.9
C105 12 10 828.9 6 10 828.9 10.2 10 828.9 10 827.3
C106 15 10 828.9 0.9 10 828.9 7.9 10 828.9 10 827.3
C107 18 10 828.9 62.8 10 828.9 18.3 10 828.9 10 827.3
C108 25 10 828.9 5.6 10 828.9 2.1 10 828.9 10 827.3
C109 38 10 828.9 58 10 828.9 10.7 10 828.9 10 827.3
C201 4 3 591.6 2.9 3 591.6 1.4 3 591.6 3 589.1
C202 28 3 591.6 19 3 591.6 4.5 3 591.6 3 589.1
C203 52 3 591.2 11.4 3 591.2 57.5 3 591.2 3 588.7
C204 76 3 590.6 308.2 3 594.5 594.4 3 597.8 - -
C205 94 3 588.9 4.6 3 588.9 7 3 588.9 3 586.4
C206 15 3 588.5 8.1 3 588.5 3.1 3 588.5 3 586.0
C207 19 3 588.3 20.1 3 588.3 13.3 3 588.5 3 585.8
C208 20 3 588.3 25.6 3 588.3 7.2 3 588.5 3 585.8
R101 6 20 1642.9 34.4 19 1650.8 38 19 1656.2 20 1637.7
R102 28 18 1473.7 268.6 18 1473.7 420.7 18 1477.4 18 1466.6
R103 51 15 1227.8 320.6 14 1218.7 319.3 14 1222.9 14 1208.7
R104 74 11 1006.6 169.4 10 1007.8 432.2 10 1013.3 - -
R105 19 15 1365.5 132.5 15 1367.5 114.2 14 1404.8 15 1355.3
R106 36 13 1246.1 514.9 13 1243.9 219.8 12 1293.9 13 1234.6
R107 56 12 1097.8 240.5 11 1092.0 24.8 11 1085.8 11 1064.6
R108 77 10 969.2 286 10 980.2 244.1 10 965.3 - -
R109 38 13 1161.8 440.3 12 1172.6 253.6 12 1186.4 13 1146.9
R110 56 12 1108.2 493.3 12 1102.4 284.2 11 1107.9 12 1068.0
R111 55 12 1088.7 203.4 11 1092.2 47 11 1070.9 12 1048.7
R112 78 11 981.7 583.9 10 1000.2 314.5 10 965.7 - -
R201 13 8 1150.0 390.7 6 1171.8 382.3 4 1485.4 8 1143.2
R202 34 7 1041.2 468.1 6 1049.5 599.4 4 1101.5 - -
R203 55 6 877.6 182 5 890.0 437.7 4 913.0 - -
R204 77 5 751.2 598.5 3 808.8 103.8 3 824.6 - -
R205 28 6 966.7 216.6 4 1009.5 18.9 3 1205.6 - -
R206 44 5 902.1 198.5 5 896.4 433.9 3 956.1 - -
R207 62 4 813.1 387.4 3 856.0 472.7 3 814.8 - -
R208 81 4 725.7 215.6 3 710.5 306.8 3 708.8 - -
R209 41 5 870.5 572.8 5 881.4 346 4 901.9 - -
R210 44 7 927.0 473.9 4 931.6 486.7 3 1087.3 - -
R211 59 5 779.3 530.3 4 770.7 320.4 3 794.5 - -
RC101 19 16 1645.6 20.2 15 1663.4 153.2 15 1737.0 15 1619.8
RC102 36 15 1487.6 532 14 1505.1 351.7 13 1480.7 14 1457.4
RC103 55 12 1289.1 206.1 13 1360.7 599.6 11 1264.3 11 1258.0
RC104 76 11 1187.0 142.2 11 1169.1 192.4 10 1157.2 - -
RC105 36 16 1544.0 552.1 15 1562.7 274.7 15 1543.2 15 1513.7
RC106 40 14 1412.7 339.1 13 1404.4 428 12 1415.6 - -
RC107 59 12 1235.2 580.8 11 1255.1 414.3 11 1262.4 - -
RC108 75 12 1145.9 52.1 11 1162.9 259.6 11 1149.6 - -
RC201 14 9 1268.8 285.7 5 1327.2 162.3 5 1469.7 9 1261.8
RC202 34 8 1113.6 197.1 5 1160.6 281.2 4 1443.7 - -
RC203 56 6 955.4 146.3 4 1015.2 170.5 4 1014.0 - -
RC204 77 4 791.4 207.2 4 812.1 438 3 843.1 - -
RC205 28 7 1167.6 128 5 1290.0 144.5 5 1286.7 - -
RC206 30 6 1080.1 418.1 5 1067.0 515 4 1207.8 - -
RC207 44 7 988.2 74.5 5 996.5 589 4 1079.1 - -
RC208 63 6 817.5 449 5 789.5 380.5 3 919.8 - -

Averages 8.9 990.8 235.8 8.2 1002.0 240.3 7.7 1030.6 - -

88 H. Sontrop, P. van der Horn, and M. Uetz

5 Conclusions and Recommendations

One of the key reasons for the good performance of our algorithms for VRPTW
is, we believe, due to the ability to generate powerful compound moves that do
not require a path reversal. It must be noted, however, that methods that do
perform path reversals, are extremely efficient in settings without time windows.
We observed that, on average, when there is high overlap in the time windows,
the procedure performs less effective. It is likely that the absence of path reversals
is a reason. However, our concept can be adapted quite easily to include moves
that use path reversals, too.

It can be considered a strength that the procedures do not, in any form, use
pre-processing or post-processing. Also, the procedures cannot be considered
two-phased methods, since they always use the same, extremely simple, start
solution. A strong feature of the Iterated Local Search is that the kick move
can be made very problem-specific, and can be used to decrease any possibly
sustained infeasibility during the search.

Generalizing the CDR reference structure by relaxing the constraint that
one of the roots must be the core is likely to further improve the procedure.
The resulting Generalized Doubly Rooted reference structure (GDR) is shown
in figure 6. The stated rules can be used as guidelines to create new S, E and
T -type rules to exploit the GDR structure. E rules can be constructed that are
able to increase or decrease the number of routes. In contrast, in the stated
procedure, the total number of routes cannot be changed by more than one
route per ejection chain. Further research is necessary to examine the potential
of the GDR structure over the CDR structure. Finally, the procedure can, in

Fig. 6. Generalized Doubly Rooted reference structure (GDR)

all probability, easily be extended to the multi-depot case by using the reference
structure in Figure 6, but allowing the roots to lie on cycles not necessarily joined
by the same depot.

Acknowledgements. We thank Geert Teeuwen for the cooperation at CQM.
In addition, the authors would like to thank Fred Glover and Emile Aarts for
all their valuable comments, suggestions and encouragement. We found their
collaboration very inspiring. Finally, we thank the anonymous referees for their
valuable suggestions for improvement.

Fast Ejection Chain Algorithms for Vehicle Routing with Time Windows 89

References

1. E. H. L. Aarts and J. K. Lenstra. Local search in combinatorial optimization.
Wiley, Chichester, UK, 1996.

2. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Comput. Surv., 35(3):268–308, 2003.

3. G. Clark and J. W. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568–581, 1964.

4. M. den Besten, T. Stützle, and M. Dorigo. Design of iterated local search algo-
rithms. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni,
E. Hart, G. R. Raidl, and H. Tijink, editors, Applications of Evolutionary Com-
puting, volume 2037 of Lecture Notes in Computer Science, pages 441–451, 2001.

5. D. Gamboa, C. Rego, and F. Glover. Implementation analysis of efficient heuristic
algorithms for the traveling salesman problem. Computers and Operations Re-
search, 2005. To appear.

6. P. L. George and H. Borouchaki. Delaunay Triangulation and Meshing, Applica-
tions to Finite Elements. Hermes, 1998.

7. F. Glover. Ejection chains, reference structures and alternating path methods for
traveling salesman problems. Discrete Applied Mathematics, 65:223–253, 1996.

8. F. Glover and M. Laguna. Tabu Search. Kluwer, Dordrecht, NL, 1998.
9. P. Kilby, P. Prosser, and P. Shaw. Guided local search for the vehicle rout-

ing problem. In S. Voss, S. Martello, I. H. Osman, and C. Roucairol, editors,
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimiza-
tion, pages 473–486. Kluwer, Boston, MA, 1997.

10. S. Lin and B. W. Kernighan. An effective heuristic for the traveling salesman
problem. Operations Research, 21:498–516, 1973.

11. H. R. Lourenco, O. Martin, and T. Stützle. Iterated local search. In F. Glover
and G. Kochenberger, editors, The Handbook of Metaheuristics, pages 321–353.
Kluwer, Norwell, MA, 2002.

12. O. C. Martin and S. W. Otto. Combining Simulated Annealing with Local Search
Heuristics, volume 63 of Annals of Operations Research, pages 57–75. 1996.

13. C. Rego. A subpath ejection method for the vehicle routing problem. Management
Science, 44(10):1447–1459, 1998.

14. Y. Rochat and É. D. Taillard. Probalistic diversification and intensification in local
search for vehicle routing. Journal of Heuristics, 1:147–167, 1995.

15. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time
window constraints. Operations Research, 35:254–265, 1987.

16. P. Toth and D. Vigo. The Vehicle Routing Problem. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2002.

17. J. Xu and J. Kelly. A network-flow based tabu search heuristic for the vehicle
routing problem. Transportation Science, 30:379–393, 1996.

3D Inter-subject Medical Image Registration
by Scatter Search�,��

Oscar Cordón1, Sergio Damas2, J. Santamaŕıa2, and Rafael Mart́ı3

1 Dept. of Computer Science and A.I., University of Granada,
ocordon@decsai.ugr.es

2 Dept. of Software Engineering, University of Granada
sdamas@ugr.es, jsantam@ugr.es

3 Dept. of Statistics and Operational Research, University of Valencia
rafael.marti@uv.es

Abstract. Image registration is a very active research area in computer
vision, namely it is used to find a transformation between two images
taken under different conditions. Point matching is an image registration
approach based on searching for the right pairing of points between the
two images. From this matching, the registration transformation we are
searching, can be inferred by means of numerical methods.

In this paper, we propose a scatter search (SS) algorithm to solve
the matching problem. SS is a hybrid metaheuristic with a good trade-
off between search space diversification and intensification. On the one
hand, diversity is basically introduced from a population-based approach
where systematic combinations of subsets of solutions are performed. On
the other hand, intensification is achieved with a local search procedure,
to ensure the local improvement of promising solutions. Our computa-
tional experimentation in a real-world inter-subject medical registration
environment establishes the effectiveness of our procedure in relation to
different approaches usually applied to solve the problem.

1 Introduction

Image registration (IR) is a fundamental task in computer vision used to finding
a correspondence (or transformation) among two or more pictures taken under
different conditions: at different times, using different sensors, from different
viewpoints, or a combination of them [2]. Point matching is an IR approach
based on searching for the right pairing of points between two images. From this
matching, the registration transformation we are searching, can be inferred by
means of numerical methods. Therefore, the hard problem to be faced from this
IR approach is point matching.
� Research by Oscar Cordón and Sergio Damas is supported by the Ministerio de

Ciencia y Tecnologia under project TIC2003-00877 (including FEDER fundings).
�� Research by Rafael Mart́ı is partially supported by the Ministerio de Educación y

Ciencia (refs. TIN2004-20061-E and TIC2003-C05-01) and by the Agencia Valen-
ciana de Ciencia i Tecnologia (ref. GRUPOS03 /189).

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 90–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

3D Inter-subject Medical Image Registration by Scatter Search 91

In the last few years, there is an increasing interest on applying metaheuristic
approaches to IR [4,5,6,13,17,22]. In this work, we try to exploit the benefits of
applying Scatter Search (SS) [15] to solve a real-world problem of inter-subject
medical registration of human brains and our contributions are related to the
fact of properly balancing the diversity and intensification components of this hy-
brid metaheuristic as well as taking advantage of heuristic information extracted
from the images (curvature information) to guide the process. Such information
has been proved to return good quality solutions [7]. We consider it in order
to reduce the number of meaningful points and to obtain a good topological
characterization of the shape, therefore enabling a better matching. The pro-
posed SS-based IR algorithm is a significantly improved version of that in [4]
that allows us to properly deal with more complex IR problems (see Section 7).

The performance of the SS algorithm proposed is tested against the prelim-
inary version [4] in order to demonstrate the improvement made. Besides, it
is compared to a simple greedy algorithm, as well as to the technique usually
applied in the computer vision field, Iterative Closest Point (ICP) [1,7,16]. Fi-
nally, we have also considered a recent hybrid approach combining ICP with a
Simulated Annealing procedure (ICP+SA) [17].

To do so, in Section 2 we first briefly describe the IR problem. Section 3 is
devoted to introduce the SS methodology. The process to extract the heuristic
information from the image used to guide the search in the solution space is
presented in Section 4. Next, we describe the objective function in Section 5,
and our implementation to solve the 3D IR problem in Section 6. Finally, the
paper ends with computational experiments (Section 7), concluding remarks and
open research lines (Section 8).

2 Image Registration

IR is a difficult optimization problem and can be simply stated as finding a
mapping between two images: I1 named scene, and I2 named model. The ob-
jective is to find the mathematical transformation f that applied to I1 obtains
I2. Generally speaking, an image is stored in a huge amount of pixels, therefore
most IR methods usually apply a preprocessing to extract the most relevant
geometric primitives (point, lines, etc) that, in a certain way, define the objects
contained in the image. Therefore, in these feature-based methods, the problem
is reduced to find the transformation between two sets of geometric primitives.
In this paper, we restrict our attention to the case of two sets of primitives P1
and P2, consisting uniquely of points (P1 ⊆ I1, P2 ⊆ I2).

Although the final registration problem solution consists of the right values
for the parameters which determine f , two different approaches arise, each of
them working in a different solution space: i) to search for the optimal point
matching between the two images and then identify the appropriate transforma-
tion parameters —using numerical methods such as least square estimation—
to overlay the scene and the model considering such matching ([1,6,7,8,16]); and
ii) to directly search in the parameter space (usually by means of evolutionary

92 O. Cordón et al.

algorithms) to get the estimated transformation ([5,13,14,22]). While the former
involves determining which of the scene points matches each model one (thus
becoming an NP-hard combinatorial optimization problem) and then indirectly
computing the transformation parameters; the latter deals with the direct esti-
mation of the registration transformation causing this model-scene overlapping.

The point-matching approach is probably the most classical method in
feature-based registration. In mathematical terms, it can be described as fol-
lows. Given two set of points P1 = {x1, x2, ..., xn} and P2 = {y1, y2, ..., ym}, the
problem is to find a transformation f such that yi = f(xπ(i)) for i = 1, ..., r
(r = min(n, m)), where π is a permutation of size l (with l being the maximum
between n and m). Without loss of generality and to simplify the notation, we
consider that P1 is the larger point set, i.e., its dimension n is greater than that
of P2, m.

The problem solving is naturally divided in two phases. In the first one, a
permutation of l elements defines the matching between the points in P1 and P2
in such a way that the first r elements (r = m in our case) of π are the P1 points
associated to each of the m P2 points. In the second phase, from this matching of
points and using a numerical optimization method (usually least squares estima-
tion), the parameters defining the transformation f are computed. The goal is to
find the transformation minimizing the distances between the model points and
the corresponding transformed scene points. Therefore, in optimization terms,
the value associated with permutation π is given by the expression:

g(π) =
∑r

i=1 ‖fπ(xπ(i)) − yi‖2

r
,

i.e., g(π) corresponds to the Mean Square Error (MSE). Therefore, the point
matching problem can be simply stated as minimizing g(π) for any permutation
π of l elements and its corresponding transformation f. In this paper, we face the
IR problem from this point matching approach, proposing a SS implementation
to find high quality solutions to this combinatorial optimization problem.

3 Fundamentals of Scatter Search

SS was first introduced in [9] as a heuristic for integer programming. The key
idea of SS is the exploration of the solution space operating on a set of solutions,
the reference set, by combining these solutions systematically to create new ones.
When the main mechanism for combining solutions is such that a new solution is
created from the linear combination of two other solutions, the reference set may
evolve. SS does not leave solutions in a raw form produced by its combination
mechanism, but subjects candidates for entry into the reference set to heuristic
improvement, as we elaborate subsequently.

The reference set of solutions in SS is relatively small. SS chooses two or more
elements of the reference set in a systematic way with the purpose of creating new
solutions. Since the number of two-element to five-element subsets of a reference
set, for example, can be quite large, even a highly selective process for isolating

3D Inter-subject Medical Image Registration by Scatter Search 93

Fig. 1. The SS control diagram

preferred instances of these subsets as a basis for generating combined solutions
can produce a significant number of combinations, and so there is a practical
need for keeping the cardinality of the set small. Typically, the reference set has
20 solutions or less. SS systematically injects diversity to the reference set.

The fact that the mechanisms within SS are not restricted to a single uniform
design allows the exploration of strategic possibilities that may prove effective
in a particular implementation. Different authors ([10,11,15]) have recently pro-
posed a template for implementing SS (see Figure 1):

1. A Diversification Generation Method to generate a collection of diverse trial
solutions, using an arbitrary trial solution (or seed solution) as an input.

2. An Improvement Method to transform a trial solution into one or more en-
hanced trial solutions. Neither the input nor the output solutions are required
to be feasible, though the output solutions will more usually be expected to
be so. If no improvement of the input trial solution results, the “enhanced”
solution is considered to be the same as the input solution.

3. A Reference Set Update Method to build and maintain a reference set con-
sisting of the b “best” solutions found (as said, b is typically no more than
20), organized to provide efficient accessing by other parts of the method.
Solutions gain membership to the reference set according to their quality or
their diversity.

4. A Subset Generation Method to operate on the reference set, to produce a
subset of its solutions as a basis for creating combined solutions.

5. A Solution Combination Method to transform a given subset of solutions pro-
duced by the Subset Generation Method into one or more combined solution
vectors.

Of the five methods in the SS methodology, only four are strictly required.
The Improvement Method is usually needed if high quality outcomes are desired,
thus making the algorithm become a hybrid metaheuristic, more specifically, a
kind of memetic algorithm [19]. On the other hand, more advanced hybrid SS de-
signs could incorporate a short term tabu search or other complex metaheuristic
as the improvement method instead of classical local search (usually demanding
more running time).

94 O. Cordón et al.

4 Shape-Derived Heuristic Information for 3D Image
Registration

This section is devoted to introduce the heuristic information that can be derived
from the curvature of the shapes included in the images to be registered in order
to better solve the IR problem. To do so, let us first define the iso-intensity
surface of a 3D image, which will be called simply the iso-surface in the rest of
this paper. For any continuous function C(x, y, z) of IR3, any value I of IR (called
the iso-value) defines a continuous, not self-intersecting surface, without hole,
which is called the iso-intensity surface of C [18]. A non ambiguous way to define
the iso-surface is to consider it as being the surface which separates the space
regions where the intensity of C is greater or equal to I from these regions whose
intensity is strictly lower than I. Whether such an iso-surface corresponds to the
boundary of the scanned object is another problem, that will not be considered
in the current contribution. Because of their good topological properties, iso-
surface techniques are the most widely used methods of segmentation for 3D
medical images.

n

t

t
1

2

1 k

Crest line

Principal
directionMaximal

curvature

Fig. 2. Differential characteristics of surfaces

Let us see now some properties of the iso-surfaces (see Figure 2). At each
point p of those surfaces, there is an infinite number of curvatures but, for each
direction t in the tangent plane at p, there is only one associated curvature kt.
There are two privileged directions of the surface, called the principal directions
(t1 and t2), which correspond to the two extremal values of the curvature: k1
and k2. There are many more parameters to determine the characterization of
surfaces, but we have considered the latter two (k1 and k2) being enough to be
considered as heuristic information to help us the IR problem solving.

5 Objective Function

As said, the main novelty of our method is that the features of the image iso-
surfaces (the curvature information seen in Section 4) are used to guide the

3D Inter-subject Medical Image Registration by Scatter Search 95

matching. So, we define a function merror(·) evaluating the goodness of the
matching stored in π by using the curvature values shown in Section 4. In this
contribution, we have chosen the following:

merror(π) = Δk1 + Δk2 where Δkj =
∑r

i=1(k
i
j − kπi

j)2, j = {1, 2}

Δk1 and Δk2 measure the error associated to the matching of scene and model
points with different values for the first and second principal curvatures, respec-
tively.

This way, the objective function (noted F (·)) will include information re-
garding the usual IR measure g(π) (see Section 2) and the previous criterion as
follows:

min F (π) = w1 · g(π) + w2 · merror(π) (1)

where the first term stands for the transformation estimation error and the
second one for the matching error, and w1, w2 are weighting coefficients defining
the relative importance of each.

With such a function we will have a more suitable similarity measurement
to make a better search process in the space of solutions. Instead of considering
a function based on a single registration error criterion, the use of the previous
two terms working together to solve the IR problem is an important part of our
novel proposal.

6 A Scatter Search Algorithm for 3D IR

As seen in Section 3, the SS methodology basically consists of five elements
(and their associated strategies): Diversification Generation Method, Improve-
ment Method, Solution Combination Method, Reference Set Update Method,
and Subset Generation Method. The three former are problem dependent, and
should be designed specifically for the problem at hand (although it is possible
to design “generic” procedures, it is more effective to base the design on specific
characteristics of the problem setting). The other two are context independent,
and usually have a standard implementation.

In this contribution, we have considered the same design of the preliminary
version [4] for the two context independent components, the Reference Set Up-
date Method, and the Subset Generation Method. However, the implementation
of two of the three specific elements (the Diversification Generation Method and
the Improvement Method) has been changed in order to improve the performance
of our SS-based IR technique, allowing it to deal with significantly more complex
problem instances as we will see in the next section. Another design choice has
been also considered for the last component, the Solution Combination Method,
but the experimental results showed that the original operator behaves better.

The next five items are devoted to describe the design decisions made for each
SS component in our problem, especially focusing on the description of the two
specific SS elements mentioned above: the Diversification Generation Method,
and the Improvement Method, for which a wider description is reported.

96 O. Cordón et al.

Diversification Generation Method. As seen, instead of considering a com-
pletely random generation of the initial solutions as done in [4], a heuristic pro-
cedure can be designed by means of the image-derived information described in
Section 4. It can be used to establish a preference for good assignments between
the scene image points and the model image ones. Hence, a point xi from the
scene image is more likely to be assigned to those model points yj presenting
the same or similar curvature values k1 and k2.

Hence, we can make use of this information in order to generate the initial
set P of diverse solutions for our SS procedure, thus obtaining solutions with
both good quality and high diversity. To do so, instead of fixing a selection
order for the scene points xi and then assigning the closest model point yj

(as regards the curvature values) not yet considered to each of them (which
would result in a deterministic, greedy heuristic), we introduce randomness in
both processes allowing each decision to be randomly taken among the best
candidates. This way, our diversification generation method behaves similarly to
a GRASP construction phase [20].

The reference set, RefSet, is a collection of b = b1 + b2 solutions (reference
points) that are used to generate new solutions. The construction of the initial
reference set starts with the selection of the best b1 ≤ b improved solutions
from P . These solutions are added to RefSet and deleted from P . The remaining
b2 = b−b1 RefSet solutions are selected from P taking into account the diversity.

Improvement Method. It involves applying local search strategies. In our
work, we have chosen the “best-first” local search with the swapping neighbor
operator in which swaps are used as the primary mechanism to move from one
solution to another. In our previous work [4], two improvements were considered
in order to speed the local search procedure up. On the one hand, a primary
strategy was applied in the neighborhood generation by only considering promis-
ing swapping moves taking as a base the curvature information. On the other
hand, a selective application of the local optimizer was also considered. As men-
tioned in Section 3, a SS algorithm can be implemented without this component,
although its use allows it to obtain high quality outcomes. Hence, in order to
obtain an appropriate balance between the solution quality upgrade resulting
from the Improvement Method use and the time consumed by it, we decided not
to run the local search over each solution generated by the Combination Method
but only on some of them.

Note that the contribution to the objective function F of every matching
stored in π is different. Therefore, points should not be treated equally by a
procedure that selects an index for a local search (i.e., for search intensification).
Hence, as a more suitable extension of our previous proposal, we are now intro-
ducing the sorting of the point-matchings considering the contribution of each
correspondence to the permutation evaluation. Those matchings with a high er-
ror contribution will be good candidates for a swapping. In order to look for
a new correspondence for such points we will use the curvature information to
favor a matching between similar feature points.

3D Inter-subject Medical Image Registration by Scatter Search 97

Subset Generation Method. In our implementation, subsets are always com-
posed of pairs of solutions and three different kinds of them are generated. On
the one hand, subsets with the b1 ∗ (b1 − 1) possible pairs of solutions in the
quality part of the RefSet are created in order to intensify the search by combin-
ing high quality solutions. On the other hand, each of the b2 ∗ (b2 − 1) pairs of
solutions in the diversity part are also considered to generate combined solutions
for diversification purposes. Finally, a third group of b1 ∗ b2 subsets is created
by pairing each solution of the quality part with every one in the diversity part,
thus getting combined solutions with an intermediate search behavior.

Solution Combination Method. This method takes each solution subset
built by the Subset Generation Method and obtains new solutions from it by ap-
plying a combination operator. As our coding scheme is based on a permutation,
in [4], we made use of the classical PMX recombination operator [12] to combine
the two solutions from each subset. We have now tested another type of combi-
nation method, named Voting Method [3]. It is based on deterministic elements
and is widely used in the context of applying SS to tackle permutation-based
problems [15]. Unfortunately, the results worsened using the latter approach.
Therefore, we decided to maintain the use of the PMX combination method.

Reference Set Update Method. In our approach, the Solution Combination
Method first generates all the new solutions from the combinations of each subset,
and then the reference set is updated with these new solutions. Such updating
process is called a static updating mechanism [15].

The method makes an updating process using both quality and diversity
criteria. Firstly, the list of new solutions is increasingly sorted by their fitness
value: {s1 ≤ s2 ≤ ... ≤ s(b2−b)/2} where the first solution s1 is the best one
generated by the combination method in the current iteration. If the fitness
value of s1 is lower than the worst solution in the quality part of RefSet ({q1 ≤
q2 ≤ ... ≤ qb1}), i.e. lower than qb1 , then s1 will replace qb1 . The process goes on
checking if the fitness value of s2 is lower than the one of qb1−1, and so on.

After considering the quality criterion, if the list is not empty the diversity
updating will start. To do so, we will analyze the diversity of every solution in
the list compared to those in RefSet, in order to guarantee that the b2 most
diverse ones are stored in the diversity part of RefSet. The process goes on with
the remaining solutions in the list till every solution in the list is checked.

Finally, in case no solution in the Reference set is updated, a restart process
is applied. The process involves maintaining the best solution from the quality
part of RefSet, generating the remaining solutions by the usual Diversification
Generation Method, and starting again the SS procedure.

7 Experiments

7.1 Image Registration Problems Considered

Our results correspond to a number of registration problems for three different
3D images. These images have been obtained from the BrainWeb database at

98 O. Cordón et al.

McGill University. The purpose of this simulator is to provide researchers with
ground truth data for image analysis techniques and algorithms. BrainWeb has
been widely used by the IR research community (see, for example, [21]). This
experimental setup is significantly more complex than that considered in [4] due
to two main reasons. On the one hand, one of the two images handled in the
latter was a simple, synthetic one, while in the current experimentation we deal
with three real-world magnetic resonance images (MRIs) of three human brains.
On the other hand, the most important challenge associated to the current ex-
perimentation is that the goal of the IR process is to register two different images
of similar objects, thus having a more realistic situation in medical IR named
inter-subject registration. Of course, the registration of different objects is much
more complex than that of different views of the same objects, and this was
what motivated the extension of our previous algorithm in order to obtain good
performance in the new IR scenario. Finally, we should note that four different
registration transformations are considered (while only three were used in [4]),
thus having two more problem instances (eight instead of six).

These MRIs have suffered the same four global similarity transformations Ti

(see Table 1) thus generating the eight different IR problem instances (I1 vs.
Ti(I2) and I1 vs. Ti(I3), i = 1, . . . , 4) to be solved by the old version of the SS-
based IR process [4], the new version proposed in this paper, the greedy algorithm
described in the Diversification Generation Method in Section 6, as well as by
the last version of the technique usually applied in the computer vision field,
the Iterative Closest Point (ICP) [16]. We have also considered a recent hybrid
approach combining ICP with a Simulated Annealing procedure (ICP+SA) [17].
Notice that we consider several more comparison algorithms than in [4] where
only an old version of the ICP method and a memetic algorithm designed by
ourselves were used.

Table 1. Transformations applied to every 3D image

T1 T2 T3 T4

RotAngle◦ 115.0 168.0 235.0 276.9
RotAxisx -0.863868 0.676716 -0.303046 0.872872
RotAxisy 0.259161 -0.290021 -0.808122 0.436436
RotAxisz 0.431934 0.676716 0.505076 -0.218218

Δx -26.0 6.0 16.0 12.0
Δy 15.5 5.5 -5.5 5.5
Δz -4.6 -4.6 -4.6 -24.6
S 1.0 0.8 1.0 1.2

After preprocessing the three images (I1, I2, I3), 583, 393 and 348 points are
obtained, respectively (see Figure 3).

7.2 Parameter Settings

All the runs have been performed on a 2.6 GHz. Intel Pentium IV processor.
As regards the ICP parameter values, a maximum number of 40 iterations is

3D Inter-subject Medical Image Registration by Scatter Search 99

Fig. 3. From left to right, and top to bottom: Original images, their respective isosur-
faces, and their crest lines points. Note that the second and third MRIs include 1% of
Gaussian noise. I3 (last row) also considers a multiple sclerosis lesion (see circle).

considered in order to allow a proper convergence of the algorithm. We have also
followed the author guidelines to fix the k parameter [16]. The hybrid algorithm
(ICP+SA) also considers a maximum number of 40 iterations for ICP and 20
iterations for the annealing, as well as 50 trial movements around each annealing
iteration. Meanwhile, both SS variants are run for 20 seconds in every problem
instance. Besides, we consider an initial set P with 80 solutions, a number of
b = b1 + b2 = 10 solutions that compound the RefSet, with b1 = 7 and b2 = 3.
For the Improvement Method, a maximum of 80 iterations has been fixed at each
execution. We perform 15 runs of ICP+SA and the two SS algorithms for every
problem instance, starting from a different random number generator seed, in
order to avoid the bias of randomness.

7.3 Results

We present the g (i.e. the MSE) value (see Section 2) of every solution as a
metric to comparing the greedy, ICP, ICP+SA and the two variants of the SS
algorithm. Such statistical values are presented in Table 2 where SS stands for
the old version of the SS-based IR process [4] and SS∗ for the improved version
presented in this paper.

Regarding to these results, we want to remark that the new version of our
SS outperforms the remaining algorithms in every problem instance (consider-

100 O. Cordón et al.

Table 2. MSE corresponding to the four transformations in Table 1 applied to both
the I1 vs. Ti(I2) and I1 vs. Ti(I3) IR problems considered. m stands for the minimum,
M for the maximum, μ for the mean, and σ for the standard deviation values.

I1 vs. Ti(I2)
I1 vs. T1(I2)

Greedy ICP ICP+SA SS SS∗

m 50.6 344.1 247.3 76.6 32.5

M - - 344.1 770.1 38.5

μ - - 307.1 315.3 35.6

σ - - 37.8 209.8 1.9

I1 vs. T2(I2)
Greedy ICP ICP+SA SS SS∗

m 40.2 131.4 131.4 65.4 38.4

M - - 131.4 112.8 47.4

μ - - 131.4 90.9 43.1

σ - - 0 18 2.2

I1 vs. T3(I2)
Greedy ICP ICP+SA SS SS∗

m 63.6 893.6 456.8 165.9 58.1

M - - 711 922.1 63.3

μ - - 558.9 313.4 60.3

σ - - 80.8 196.2 1.3

I1 vs. T4(I2)
Greedy ICP ICP+SA SS SS∗

m 72.8 632 283.4 93.4 50.4

M - - 610.6 629.4 59

μ - - 465.1 276.5 53.8

σ - - 101.4 123.5 2.6

I1 vs. Ti(I3)
I1 vs. T1(I3)

Greedy ICP ICP+SA SS SS∗

m 235.8 517.6 304.5 148.3 70.3

M - - 432 270.3 142.6

μ - - 342.7 215.1 96.1

σ - - 31.8 39.6 19.7

I1 vs. T2(I3)
Greedy ICP ICP+SA SS SS∗

m 156.2 329.8 236.5 85.5 39.8

M - - 297 179.8 91.8

μ - - 260.9 133.8 55.1

σ - - 18.1 29.2 15.1

I1 vs. T3(I3)
Greedy ICP ICP+SA SS SS∗

m 236.2 438.4 278.5 99.5 45.1

M - - 389.2 275.6 134.3

μ - - 346.6 199.4 61.8

σ - - 33.1 52.7 23.6

I1 vs. T4(I3)
Greedy ICP ICP+SA SS SS∗

m 334.1 478.4 336.4 114.1 112.3

M - - 428.9 382.8 143.2

μ - - 381.6 288.4 122.6

σ - - 24.1 80.8 8.2

ing any pair of transformations and images). Moreover, this behavior does not
depend on a given run of the SS. As said, fifteen different seeds have been consid-
ered for the fifteen runs of this method. If we analyze the MSE mean values, as
well as their corresponding standard deviations, two different conclusions arise.
First, the MSE mean values associated to SS∗ are better than the best result
achieved by any other algorithm in every problem instance but I1 vs. T2(I2),
where the greedy result is slightly better than our SS∗ mean value (but not than
the SS∗ best one). The good performance of the simple greedy algorithm in this
problem instance is due to the heuristic information considered that allows it

3D Inter-subject Medical Image Registration by Scatter Search 101

Fig. 4. From left to right, and top to bottom: Isosurface images corresponding to the
brain of the I1 and I2 MRIs in Figure 3. The third image in the first row show the
initial scenario of the transformation T1 to be estimated by every method. The fourth
image in this row corresponds to the best T1 estimation (related to our present SS-
based IR proposal SS∗). The second row respectively shows the estimation of the greedy
algorithm, ICP, ICP+SA and the previous SS-based approach [4]. Note that, the higher
the overlapping between dark and light grey, the better the T1 estimation.

to perform properly in the first IR scenario (I1 vs. Ti(I2)) where I1 and I2 are
similar enough to compose a simpler scenario than the I1 vs. Ti(I3) one. This
can also be appreciated in view of the poor results of the old SS version which
does not make a suitable use of that image-derived information. On the other
hand, the low standard deviations show the robustness of SS∗. In particular, we
achieve one of our goals respect to our previous work [4], that is, to design a
competitive IR method even in a complex scenario of inter-subject medical IR.

Figure 4 graphically depicts the estimation of the transformation involved in
the I1 vs. T1(I2) problem instance, achieved by every algorithm. The first row
corresponds to the initial scenario with I1 (in dark grey, first image), I2 (in light
grey, second image) and both I1 and T1(I2) (third image in the first row).

All of the images in Figure 4 correspond to a preprocessed MRI (see second
column of Figure 3). Instead of showing the crest line points extracted at the final
step of the preprocessing, we prefer to illustrate the algorithms behavior using
the previous step (isosurface extraction). The reason is to ease the geometrical
comprehension of the transformation estimated by every algorithm (although,
as we mentioned above, every method only works on a selected set of points).

Every algorithm estimates T1 returning T Greedy
1 , T ICP

1 , T ICP+SA
1 , T SS

1 and
T SS∗

1 . Every estimation has been applied to the scene image in order to know
its goodness respect to the optimal transformation T1. This is what the last
picture in the first row and those in the second row of Figure 4 show, how close
is the estimation of every algorithm respect to T1. The higher the overlapping

102 O. Cordón et al.

between the dark and the light brains, the better the T i
1 estimation. None of these

algorithms but SS∗ achieves the near optimal transformation T1 (final goal of the
IR problem). From the results of Table 2, we can see that this is not an isolated
instance, but every algorithm maintains this behavior in every Ti estimation.
Because of space limitation, we can not show the corresponding figures. ç

8 Conclusions and Future Works

We have presented an SS-based IR method involving on an extension of a previ-
ous proposal [4]. We have obtained significant results in real inter-subject med-
ical experiments, clearly outperforming the previous version as well as several
existing IR techniques.

Our SS-based IR process is still in a full development state, and there are
many new possible designs for each of the SS components to achieve more accu-
rate solutions than those obtained in this first study. One of such new extensions
and alternative SS method designs can be that making a more aggressive solution
combination by applying a dynamic updating strategy within the SS Reference
Set Updating Method. Moreover, since the algorithm fundament is on a combi-
nation of solutions, other relevant extension could be to consider the more and
more employed strategy named as Path-Relinking. Likewise, the application of
other hybrid approaches to the IR problem (Ant Colony Optimization, other
kinds of memetic algorithms, etc.) are promising choices.

References

1. P. J. Besl and N. D. McKay: A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14: 239–256, 1992.

2. L. G. Brown: A survey of image registration techniques. ACM Computing Surveys,
24(4):325–376, 1992.

3. V. Campos, F. Glover, M. Laguna and R. Mart́ı: An experimental evaluation of a
scatter search for the linear ordering problem. Journal of Global Optimization, 21:
397–414, 2001.

4. O. Cordón, S. Damas, and J. Santamaŕıa: A scatter search algorithm for the 3D
image registration problem. In X. Yao et al., Eds., Parallel Problem Solving from
Nature - PPSN VIII, 8th International Conference, Birmingham, UK, September
18-22. Lecture Notes in Computer Science 3242, Springer, 471–480, 2004.

5. O. Cordón, S. Damas, and J. Santamaŕıa: A CHC evolutionary algorithm for 3D
image registration. In T. Bilgic, B.D. Baets and O. Bogazici, Eds., Fuzzy Sets
and Systems - IFSA 2003, 10th International Fuzzy Systems Association World
Congress, Istanbul, Turkey, June 30 - July 2, 2003, Proceedings. Lecture Notes in
Artificial Intelligence 2715, Heidelberg, Springer, 404–411, 2003.

6. O. Cordón, S. Damas, and E. Bardinet: 2D image registration with iterated local
search. In J.M. Beńıtez, O. Cordón, F. Hoffmann, R. Roy, Eds., Advances in Soft
Computing. Engineering Design and Manufacturing, Springer, 233–242, 2003.

7. J. Feldmar and N. Ayache: Rigid, affine and locally affine registration of free-form
surfaces. International Journal of Computer Vision, 18(2):99–119, 1996.

3D Inter-subject Medical Image Registration by Scatter Search 103

8. S. Fernández-Vidal, E. Bardinet, S. Damas, G. Malandain, and N. Pérez de la
Blanca: Object representation and comparison inferred from its medial axis. Pro-
ceedings of the International Conference on Pattern Recognition (ICPR’00), vol.
1, 712–715, Barcelona, Spain, 2000.

9. F. Glover: Heuristics for integer programming using surrogate constraints. Decision
Sciences, 8: 156–166, 1977.

10. F. Glover: A template for scatter search and path relinking. Selected Papers from
the Third European Conf. on Artificial Evolution, 3–54, Nimes, France, 1997.

11. F. Glover, M. Laguna, and R. Mart́ı: Fundamentals of Scatter Search and Path
Relinking. Control and Cybernetics, 39(3): 653–684, 2000.

12. D. E. Goldberg and R. Lingle Jr.: Alleles, loci, and the travelling salesman prob-
lem, Proc. of the First Intl. Conf. on Genetic Algorithms and Their Applications,
Lawrence Erlbaum Associates Publishers, 1985.

13. K. Han, K. Song, E. Chung, S. Cho, and Y. Ha: Stereo matching using genetic
algorithm with adaptive chromosomes. Pattern Recognition, 32:1729–1740, 2001.

14. R. He and P. A. Narayana: Global optimization of mutual information: applica-
tion to three-dimensional retrospective registration of magnetic resonance images.
Computerized Medical Imaging and Graphics, 26:277–292, 2002.

15. M. Laguna and R. Mart́ı: Scatter Search: Methodology and Implementations in C.
Kluwer Academic Publishers, Boston, 2003.

16. Y. Liu: Improving ICP with easy implementation for free-form surface matching.
Pattern Recognition, 37: 211–226, 2004.

17. J. Luck, C. Little and W. Hoff: Registration of range data using a hybrid simulated
annealing and iterative closest point algorithm. Proc. of IEEE Intl. Conf. on Rob.
and Auto., 3739-3744, 2000.

18. O. Monga, S. Benayoun, and O. D. Faugeras: Using partial derivatives of 3D im-
ages to extract typical surface features. Proc. IEEE Computer Vision and Pattern
Recognition (CVPR 92), Urbana Champaign, Illinois (USA), pp. 354–359, 1992.

19. P. Moscato: On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Technical Report, Caltech Concurrent Com-
putation Program, C3P Report 826, 1989.

20. M.G.C. Resende and C.C. Ribeiro: Greedy randomized adaptive search procedures.
In F. Glover and G. Kochenberger, Eds., State-of-the-art Handbook in Metaheuris-
tics, Kluwer Academic Publishers, Boston, 219–250, 2001.

21. M.P. Wachowiak, R. Smolikova, Y. Zheng, J.M. Zurada, and A.S. Elmaghraby: An
approach to multimodal biomedical image registration utilizing particle swarm op-
timization. IEEE Transactions on Evolutionary Computation 8(3): 289–301, 2004.

22. S. M. Yamany, M. N. Ahmed, and A. A. Farag: A new genetic-based technique for
matching 3D curves and surfaces. Pattern Recognition, 32:1817–1820, 1999.

Evolution Strategies and Threshold Selection

Thomas Bartz-Beielstein

Department of Computer Science,
University of Dortmund, Germany
thomas.bartz-beielstein@udo.edu

http://ls11-www.cs.uni-dortmund.de/people/tom

Abstract. A hybrid approach that combines the (1+1)-ES and thresh-
old selection methods is developed. The framework of the new exper-
imentalism is used to perform a detailed statistical analysis of the ef-
fects that are caused by this hybridization. Experimental results on the
sphere function indicate that hybridization worsens the performance of
the evolution strategy, because evolution strategies are well-scaled hill-
climbers: the additional threshold disturbs the self-adaptation process of
the evolution strategy. Theory predicts that the hybrid approach might
be advantageous in the presence of noise. This effect could be observed—
however, a proper fine tuning of the algorithm’s parameters appears to
be advantageous.

1 Introduction

Following Stützle and Hoos, metaheuristic approaches can be described as generic
techniques that are used “to guide or control an underlying problem-specific
heuristic method in order to improve its performance or robustness”[1]. Hybrid
metaheuristics combine methods of different metaheuristics. Two contradictory
trends can be observed in recent research: (i) to develop more and more new
algorithms or (ii) to analyze and understand existing heuristics and to add new
features only when necessary. Following (ii), we will analyze potential assets and
drawbacks that arise from a combination (hybridization) of evolution strategies
and threshold selection. The analysis comprehends methods from the new ex-
perimentalism, that is an influential trend in recent philosophy of science. The
new experimentalists develop statistical methods to set up experiments, to test
algorithms, and to learn from the resulting errors and successes [2].

In many cases heuristics require the determination of parameters before the
optimization run is performed. In the remainder of this paper, optimization runs
will be treated as experiments. From the viewpoint of an experimenter, design
variables (factors) are the parameters that can be changed during an experiment.
Here comes the new experimentalism into play: a systematic variation of these
factors and a statistical analysis of the resulting errors and successes are the
keys for an understanding of the algorithm’s performance. Generally, there are
two different types of factors that influence the behavior of an optimization
algorithm: (i) problem specific and (ii) algorithm specific factors.

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 104–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Evolution Strategies and Threshold Selection 105

These factors will be discussed in Section 2. Evolution strategies will be
introduced in Section 3, and threshold selection approaches are presented in
Section 4. Section 5 considers test problems and performance measures that are
used afterwards to perform the experiments. The paper closes with a summary
and conclusion.

2 Experimental Designs

Algorithm specific factors will be considered first: Endogenous can be distin-
guished from exogenous algorithm parameters. The former are kept constant
during the optimization run, whereas the latter, e.g. standard deviations in evo-
lution strategies, are modified by the algorithms during the run. An algorithm
design DA is a set of vectors with specific settings of an algorithm. A design can
be specified by defining ranges of values for the design variables, e.g. “1:1:10”
denotes integers from 1 to 10, whereas “1:10” denotes real numbers from the
interval [1, 10], or by specifying a set of values, e.g. “{1, 5, 10}”. Note that a
design can contain none, one, several or even infinitely many vectors. We will
consider quantitative factors only. How qualitative factors can be included into
the experimental analysis is discussed in [3].

Problem designs DP provide information related to the optimization problem,
such as the available resources, e.g. the number of function evaluations tmax.
Furthermore it is important to specify initialization and termination criteria. An
experimental design D consists of a problem design DP and an algorithm design
DA. The run of a stochastic search algorithm can be treated as an experiment
with a stochastic output Y (xa, xp), with xa ∈ DA and xp ∈ DP . If random seeds
are specified, the output would be deterministic. This case will not be considered
further, because it is not a common practice to specify the seed that is used in
an optimization run.

Performance can be measured in many ways, for example as the best or the
average function value from n runs (see also Section 5). One of our goals is to
find a design point x∗

a ∈ DA that improves the performance of an optimiza-
tion algorithm for one problem design point xp ∈ DP . To test the robustness
of an algorithm, more than one design point can be considered. The approach
to determine good design points presented in this paper is based on the sequen-
tial parameter optimization (SPO) methodology developed in [4] that has been
applied successfully in several contexts, e.g. [5,6].

3 The Two Membered Evolution Strategy

The two membered evolution strategy, or (1 + 1)-ES, is included in our analysis
for three reasons: (i) It is easy to implement, (ii) it requires only a few exogenous
parameters, and (iii) it defines a standard for comparisons. Many optimization
practitioners apply the (1 + 1)-ES (Figure 1) to their optimization problem.
Schwefel [7] describes this algorithm as “the minimal concept for an imitation

106 T. Bartz-Beielstein

Procedure (1 + 1)-ES/TS.

Initialization: Initialize the iteration counter: t = 1. Determine: (i) a point X
(t)
1

with associated position vector x
(t)
1 ∈ Rd, (ii) a standard deviation σ(t), and

(iii) a threshold value τ (t). Determine the function value y1 = f(x(t)
1).

while some stopping criterion is not fulfilled do

repeat M times:
Mutation: Generate a new point X

(t)
2 with associated position vector

x
(t)
2 as follows:

x
(t)
2 = x

(t)
1 + z, (1)

where z is a d-dimensional vector. Each component of z is the real-
ization of a normal random variable Z with mean zero and standard
deviation σ(t).

Evaluation: Determine the function value y2 = f(x(t)
2).

Selection: Accept X
(t)
2 as X

(t+1)
1 if

y2 + τ (t) < y1, (2)

otherwise retain X
(t)
1 as X

(t+1)
1 . Increment t.

end.

Adaptation:
Update σ(t). Update τ (t). (3)

done.

Fig. 1. The hybrid evolution/threshold selection strategy (ES/TS). The two membered
evolution strategy or (1+1)-ES for real-valued search spaces uses M = 1 and τ (t) ≡ 0.
The symbol f denotes an objective function f : Rd → R to be minimized. Threshold
selection (TS) uses a constant step-size σ(t) ≡ σ and a threshold adaptation scheme.

of organic evolution”. The standard deviation σ will be referred to as step-width
or mutation strength. We will consider the following two ES-variants:

(ES-1) Constant Step Length. The basic (1+1) algorithm does not modify
the step-size σ(t) in Equation 3 and uses a zero threshold τ (t). It is expected
to be outperformed by other algorithms. However, sometimes unexpected
results may occur. Probably nothing unexpected may happen, “but if some-
thing did happen, that would be a stupendous discovery” [8]. This algorithm
requires the specification of a (constant) step-size σ(t) value only.

(ES-2) Step-Length Adaptation. Step-length adaptation relies on the fol-
lowing heuristic: The step-size (standard deviation) should be adapted dur-
ing the search. It should be increased, if many successes occur, otherwise
it should be reduced. The 1/5 success rule derived by Rechenberg [9] while
analyzing the (1+1)-ES on two basically different objective functions for se-
lecting appropriate step lengths can be seen as one instance of this heuristic:

Evolution Strategies and Threshold Selection 107

From time to time during the optimization obtain the frequency of successes,
i.e., the ratio of the number of the successes to the total number of trials
(mutations). If the ratio is greater than 1/5, increase the variance, if it is
less than 1/5, decrease the variance.

A more precise formulation is required to implement the 1/5 success rule. “From
time to time during the optimization run” can be interpreted as “after every
sn mutations.” “Increase the variation” can be implemented as a multiplication
with a step-size adjustment factor. Other schemes are possible, e.g. to additive
or exponential variations. The ratio of the number of the successes to the total
number of mutations, the so-called success rate sr, might be modified as well as
the factor by which the variance is reduced or increased, the so-called step size
adjustment factor sa. We analyze the following two variants to implement the
1/5 rule:

(intv). A success counter c ∈ N0 is initialized at iteration t = 1. If a success-
ful mutation occurs, c is increased. Every sn iterations, the success rate is
determined as c/sn and c is set to zero.

(cont). A success vector v(t) ∈ Bsn is initialized at iteration t = 1: v
(t)
k = 0,

1 ≤ k ≤ sn. If a successful mutation occurs at iteration t, the (1+t mod sn)-
th bit is set to 1, otherwise it is set to 0. After an initialization phase of sn

iterations, the success rate is determined in every iteration as
∑sn

k=1 v
(t)
k /sn.

The related algorithm designs are summarized in Table 1.

Table 1. Factors of the two membered evolution strategy. Based on the default values,
the step size σ is multiplied by 0.85, if the success rate is larger than 1/sr = 1/5 or
equivalently, if more than 20 out of 100 mutations have been successful.

Symbol Factor Range Default

sn adaptation interval N 100
sr 1/success rate R+ 5
sa step size adjustment factor R+ 0.85
σ(0) starting value of the step size σ R+ 1
s1/5 step size update rule {intv, cont } cont

4 Threshold Selection Algorithms

Threshold rejection (TR) and threshold acceptance (TA) are complementary
strategies. Threshold rejection has been proposed as a selection method for evo-
lutionary algorithms, that accepts new candidates if their function values are
significantly better than the values of the other candidates [10]. “Significant” is
equivalent to “by at least a margin of τ”. Threshold acceptance accepts a new
candidate even if its function value is worse [11,12,13]. The term threshold selec-
tion (TS) subsumes both selection strategies. The hybrid approach presented in

108 T. Bartz-Beielstein

this paper analyzes how threshold selection can be integrated into the (1+1)-ES
strategy (Figure 1). Threshold selection provides the opportunity to escape from
local optima and is implemented in many algorithms, for example in simulated
annealing: During the initial iterations of a search algorithm it is advantageous to
accept worse candidate solutions. The probability of accepting a worse candidate
should be continuously reduced as the number of iterations increases. However,
it is a kind of art to choose a suitable annealing schedule [13]. The annealing
schedule can be seen as one instance of a more general acceptance heuristic:
The probability of accepting a worse candidate solution should be adapted during
the search. It should be reduced if a candidate solution is accepted, otherwise it
should be increased. We implemented three variants of threshold selection that
have been integrated into evolution strategies. Table 2 summarizes the factors
used in the threshold selection algorithms.

(TS-1) Constant. To integrate a threshold mechanism into an (1 + 1)-ES,
a non-zero threshold value τ has to be determined. This threshold affects
Equation 2.

(TS-2) Linear. This variant modifies the threshold value linearly. Negative
threshold values values are increased during the search process as follows:
τ (t) = τ(−1 + t/tmax), with τ (t) ∈ [−τ, 0]. If positive threshold values are
specified, the rule τ (t) = τ(1 − t/tmax), with τ (t) ∈ [τ, 0] is used to modify
the threshold.

(TS-3) Self-adaptive. We integrated a self-adaptive annealing schedule into
the algorithm. Although there is no obvious analogy for the “temperature” T
with respect to the optimization problem, we will use T , because it is an es-
tablished term to describe the variation of the acceptance probability during
the search process. Let yi denote the function values as defined in Figure 1.
If the mutation was successful, the temperature T is modified according to
T = T/(1 + bτT), otherwise T = T/(1 − τT). The new candidate solution
is accepted with probability exp(δ/T), with δ = y2 − y1 (Equation 2). Note,
that τ defines how much the temperature (that determines the probability
of accepting a worse candidate solution) is decremented at each step as the
cooling proceeds, and b specifies a balance factor.

Table 2. Factors of the
threshold selection strategies.
Note, that τ influences the
acceptance probability in
the self-adaptive threshold
heuristic.

Symbol Factor Range Default

τ threshold value R 0
b balance factor R+ 5
σ value of the step size R+ 1

5 Experiments

Classical experimental approaches in evolutionary computation (i) define a set of
test (standard) functions, (ii) run a certain number of algorithms, and (iii) finally

Evolution Strategies and Threshold Selection 109

compare the obtained results. The new experimentalism proposes a different
methodology: (i) Formulate a set of questions (hypotheses or goals), (ii) select
an appropriate set of test functions, (iii) run a certain number of algorithms, and
(iv) search for environments in which these results cannot be repeated. However,
the new experimentalism can benefit from the huge number of test functions
available in the optimization literature. Besides standard measures to determine
the algorithm’s performance such as the average, median, minimum, maximum
function values, and associated standard deviations, we report a measure based
on bootstrap, that reflects the goals of optimization practitioners to select the
best results from several runs and to skip the others:

1. Generate n results.
2. repeat k times:

(a) Select (without replacement) a set Mi of m < n values.
(b) Determine mi := min Mi.
end.

3. Calculate
∑k

i mi/k. The resulting value will be referred to as minboot.

The first goal of our experimental analysis is to find a suitable algorithm
design x∗

1+1 for the (1 + 1) ES. The next goal is to find environments where this
design does not work. The final analysis tries to find explanations, why special
environments do not permit a generalization of the results found so far. If not
stated otherwise, the methods used in this article do not require any assumption
on the underlying distributions.

5.1 How to Determine a Good Algorithm Design?

Classical designs such as fractional factorial designs are used in this pre-experi-
mental screening phase to eliminate worse algorithm designs. A very simple
configuration, which uses the sphere function

∑d
i x2

i , was chosen first (Table 3).
In the second step, more complex situations have been analyzed (varied starting
points, increased dimension). Forthcoming papers will investigate more com-
plex objective functions that introduce multi-modality or noise. Starting points
have been initialized deterministically (DETEQ), the run terminated after tmax
function evaluations (EXH), and the mean best function value from n runs was
reported (MBST) [14]. The problem design x

(0)
spherefrom Table 3 was used to gen-

erate run length distributions (RLDs) [15]. The RLDs gave valuable hints to

Table 3. Problem design for the first pre-
experimental experiments to determine a
fair experimental setup: n denotes the
number of repeated runs, tmax is the num-
ber of function evaluations, d the problem
dimension, and x(0)is the starting point.

Design n tmax d x(0)

x
(0)
sphere 50 1000 1 100

x
(1)
sphere 50 1000 1 10:100

x
(2)
sphere 50 250 2 10:100

x
(3)
sphere 100 1000 {1, 2, 5, 10} 100

x
(4)
sphere 100 106 10:10:60 100

110 T. Bartz-Beielstein

determine tmax, the maximum number of function evaluations for the compar-
isons and thereby to avoid floor and ceiling effects. These effects occur if the
problem is too easy or too hard, respectively. The success limit was set to 10−6,
that means an optimization run was classified as successful, if it was able to
determine a candidate solution x with f(x) < 10−6.

The (1 + 1)-ES with algorithm design x
(0)
1+1 from Table 4 was chosen for

this analysis. Designs from this table are used during the screening phase to
detect outliers that can disturb the analysis. Note, interactions between factors
can be more important than main factor effects [14]. An analysis of the RLDs
from experiments that are based on algorithm design x

(2)
1+1 and problem design

x
(0)
spherereveals that a budget of tmax = 500 function evaluations is sufficient. After

1000 function evaluations, only 50 percent of the runs with sa = 1 attained
the pre-specified function value (here: 10−6), whereas 100 percent of the runs
with sa = 0.9 attained this border already after 300 function evaluations. This
is a positive effect of the step-size adaptation on the performance: a step-size
adjustment factor sa of 1 keeps the step-width constant, whereas sa = 0.9 enables
an adaptation that is based on the success rate.

Table 4. (1 + 1)-ES: Algo-
rithm designs to calibrate the
experimental design and to
avoid floor or ceiling effects.
Threshold τ = 0 and initial
step size σ(0) = 1 have been
used.

Design sn sr sa

x
(0)
1+1 {10, 20, 100} {2, 5, 10} {0.5, 0.75, 0.9}

x
(1)
1+1 10 5 0.75

x
(2)
1+1 {10, 25} 5 {0.9, 1}

x
(3∗)
1+1 2 7.25 0.758

SPO suggests to vary settings of problem design to guarantee that the ob-
served effect was not caused by one specific situation. Therefore, we analyzed
how algorithm designs scale with the problem dimension. Figure 2 depicts the
relationship between problem dimension and the empirical cumulative density
function of the number of function evaluations to reach a pre-specified goal. In

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1
Empirical CDF

Number of function evaluations

F
(X

)

10
20
30
40
50
60

Fig. 2. Run-length distributions for 10-60
dimensional sphere functions. Increasing
the problem dimension from d to d + 1 re-
quires approximately 100 additional func-
tion evaluations to obtain a similar solu-
tion. Algorithm design x

(1)
1+1 and problem

design x
(4)
sphere.

Evolution Strategies and Threshold Selection 111

0 2 4 6 8 10
10

−5

10
0

10
5

Step size (constant)

F
un

ct
io

n
va

lu
e

dim = 1

dim = 10

10
−1

10
0

10
1

10
2

10
−2

10
0

10
2

10
4

10
6

10
8

Step size (constant)

F
un

ct
io

n
va

lu
e

 x(0)

100
300
700
1000

Fig. 3. Constant step length. Sphere function. Dimensions and starting points modified.
Left: x

(6)
sphere and x∗

const. Right: x
(7)
sphere and x∗

const. Constant step-sizes of σ = 1 or σ = 1.5
appear to be useful.

a similar manner as the dimension was varied, different starting points have
been used. The design x

(5)
sphere with tmax = 500, d = 2, and x(0) = 100 has been

determined in this pre-experimental phase and will be used for the following
experiments.

5.2 A Comparison of Different Heuristics

The algorithms will be fine-tuned in this section to generate results that enable a
fair comparison. In the first experiments, the algorithm with constant step-sizes
(xconst) has been analyzed (Figure 3). Two variants of problem design x

(5)
sphere

have been used: x
(6)
sphere varies problem dimensions (d=1:1:10), whereas x

(7)
sphere

uses different starting points x(0) ∈ {100, 300, 700, 1000}.
The second series of experiments have been performed to analyze the influ-

ence of the success-rate determination scheme on the performance of the two-
membered evolution strategy (problem design x

(5)
sphere and the algorithm designs

from Table 5). SPO will be used to fine-tune the algorithm design detected during
the pre-experimental phase. A comparison of the RLDs shows only minor differ-
ences between the variants x

(4∗)
1+1 and x

(5∗)
1+1 , e.g. minboot= 5.30e-40 and 1.28e-42

respectively (Table 6). A plot of the observed difference [14] was used to analyze
the statistical significance of their difference (Figure 4). We can conclude that
there is a difference in means. If 50 (500) samples are drawn, this hypothesis
would be wrong in 10 (1) out of 100 experiments. However: when A and B are
different treatments with associated means μA and μB, μA and μB are certain
to differ in some decimal places so that μA − μB = 0 is known in advance to be
false. The observed difference is very small and large sample sizes (e.g. 500) are
necessary for its statistical significance (i.e. to obtain a small p-value). Therefore
we conclude that the observed difference is not scientifically meaningful. This is
Step (S-12) as described in [4].

112 T. Bartz-Beielstein

0 2 4 6 8

x 10
−7

0

0.2

0.4

0.6

0.8

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
Le

ve
l α

n=10
n=50
n=500

Fig. 4. Comparing the difference in the
mean between success-rate schemes intv
and cont. Designs x

(5)
sphere, x

(4∗)
1+1 , and x

(5∗)
1+1

(Table 5). 500 samples are necessary to in-
dicate that the hypothesis “there is a dif-
ference in means as large as 2 ·10−7” would
be wrong only in one out of 100 experi-
ments. See [14] for a discussion of OSL-
plots.

Why do the algorithms with the tuned designs x
(4∗)
1+1 and x

(5∗)
1+1 perform better

than the default design? This means that algorithms with a very small memory,
only two or seven bits, outperform algorithms with larger sn values. Obviously, it
takes sn iterations to fill the memory vector. During this initial phase, no step-
size adaption can occur. If the budget provides only tmax = 250 iterations, a
memory vector with more than 100 entries appears to be prohibitive. However,
these considerations would explain small sn values, but not extremely small
values like sn = 2. How the size of the memory vector affects the performance
can be seen in Figure 5. It indicates that the (1 + 1)-ES is a well-scaled hill-
climber. When big steps are advantageous, the algorithm takes big steps, and
it takes little ones while approaching the optimum. The graph of the step size
illustrates this behavior. A larger memory vector reacts too slowly, step-sizes
should be adapted immediately.

Table 5. (1 + 1)-ES: Al-
gorithm design to compare
two success-rate determina-
tion schemes. Problem design
x

(5)
sphere, τ = 0 and σ(0) = 1 for

all experiments.

Design sn sr sa s1/5

x
(4)
1+1 1 : 20 1 : 20 0.5 : 0.99 cont

x
(5)
1+1 1 : 20 1 : 20 0.5 : 0.99 intv

x
(4∗)
1+1 7 2.40 0.83 cont

x
(5∗)
1+1 2 2.92 0.58 intv

Hybrid approaches have been considered next: Two factors, that are held
constant during the optimization run, are necessary to specify the algorithm de-
sign of the first hybridization, that uses constant step-sizes and constant thresh-
old values (xcsct): the step-size σ and the threshold τ . The experiments reveal
that algorithms with zero threshold values perform best. Step sizes about 1
are preferred for the hybrid metaheuristic with constant step-sizes and constant
threshold (xcsct). Results from the other hybridizations (constant step-sizes, lin-
ear threshold (xcslt) and constant step-sizes with self-adaptive threshold (xsann))
indicate that non-zero threshold values worsen the algorithm’s performance.

Evolution Strategies and Threshold Selection 113

0 100 200 300 400 500
10

−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

Function evaluations

F
un

ct
io

n
va

lu
e;

 S
te

p
si

ze
 Sn:7, Sr:2.4 Sa:0.83 Tau:0, startStep:1

function value
step size

0 100 200 300 400 500
10

−10

10
−5

10
0

10
5

Function evaluations

F
un

ct
io

n
va

lu
e;

 S
te

p
si

ze

 Sn:50, Sr:2.4 Sa:0.83 Tau:0, startStep:1

function value
step size

Fig. 5. The memory effect: the influence of different memory vector sizes on the search
process. sr = 2.4, sa = 0.831, and sn = 7 (left) or sn = 50 (right). The plot of the
logarithm of the function value over time in the left figure shows a straight line. The
problem design x

(5)
sphere was used for these experiments.

Table 6. Experimental results from the hybridizations of ES and TS. Problem design
x

(5)
sphere was used.

Algorithm Mean Median Sd Min Max minboot

x∗
const 1.65e-02 1.05e-02 1.78e-02 1.09e-05 1.46e-01 1.74e-05

x
(4∗)
1+1 9.67e-27 2.07e-32 9.07e-26 4.98e-40 9.06e-25 5.30e-40

x
(5∗)
1+1 2.73e-25 2.52e-34 2.57e-24 2.61e-44 2.57e-23 1.28e-42

x∗
csct 2.18e+03 399.43 4.89e+03 0.4656 1.89e+04 0.9612

x∗
cslt 0.3414 0.0164 2.6340 1.72e-06 25.9286 5.14e-04

x∗
sann 0.0160 0.0099 0.0171 5.38e-04 0.1013 5.82e-04

x∗
τ 0.0484 0.0410 0.0342 9.23e-04 0.1361 0.0012

x∗
τ(t) 0.0474 0.0414 0.0340 8.54e-04 0.2327 0.0014

x∗
temp 7.21e-07 5.24e-07 7.95e-07 1.04e-08 5.67e-06 1.62e-08

NMS 1.15e-77 − 0 − − −

The next series of experiments have been set up to analyze whether constant
or deterministically modified threshold schemes can improve the performance of
evolution strategies. Experiments clearly indicate that non-zero threshold values
worsen the algorithm’s performance in this situation, too. Even the self-adaptive
threshold scheme (xtemp) does not improve the algorithm’s performance. The
results from the experiments are summarized in Table 6. To improve compa-
rability, results from a Nelder-Mead simplex (NMS) optimization have been
added [16]. The Nelder-Mead algorithm requires the specification of four pa-
rameters (coefficients of reflection, expansion, contraction, and shrinkage), that
have been tuned with SPO. The NMS optimization was able to find a candidate
solution with function value 1.15e-77, a result that is significantly better then
the ES/TS results. However, NMS fails completely on the sphere function in
higher-dimensional cases, e.g. the best function value for d = 50 reads 4.77e+05,

114 T. Bartz-Beielstein

whereas the (1+1)-ES can cope with these problems (Fig. 2). This is an inherent
problem of the NMS and not due to problems with the algorithm design.

Based on local performance measures, it can theoretically be shown that ES
benefits from TS [10,14] under noise. Additive Gaussian noise has been added
to the objective function from design x

(5)
sphere. The algorithm design x

(5∗)
1+1 , that

has been tuned on the sphere function without noise, was used for the first
experiments. Constant non-zero threshold values (TS-1) were able to improve
the performance significantly. However, after applying SPO to x

(5∗)
1+1 in the noisy

environment, the tuned algorithm design performed better without threshold.
These experiments indicate that there are situations (under noise), in which a
combination of ES and TS might be beneficial.

6 Summary and Conclusion

The paper demonstrated the huge potential for the new experimentalism in
computer science. Good algorithm designs can lead to impressive performance
improvements and to robust algorithms that can be constructed systematically.
SPO provides means for an in-depth understanding and fair comparisons of
algorithms. The framework of the new experimentalism can be used to determine
if statistically significant results are scientifically meaningful.

The SPO approach presented here can easily be applied to other algorithm–
problem combinations. A recent paper discusses three scenarios to demonstrate
its flexibility: (i) to analyze newly developed algorithms, (ii) to compare well-
known algorithms, and (iii) to apply algorithms efficiently and effectively to
complex real-world optimization problems [6]. Or, consider for example binary
search spaces: mutation can be realized by random bit-flips of the position vector
x

(t)
1 . The probability pm of flipping a bit can be regarded as the pendant to

the mutation strength σ. Or, travelling salesperson problems can be regarded
as ordering problems that require combinatorial search spaces. A search step
operator defines the number of states ns that can be reached from a parental
state (neighborhood) within one move step. The number of move steps s can be
seen as a pendant to the mutation strength σ.

The sphere function has been chosen as a test-function with a calculable
influence on the results. Evolution strategies require only a small memory vec-
tor while optimizing the sphere—too much information (memory) is debili-
tating. No difference between the two step-size adaptation schemes (intv and
cont) could be observed. Is this also true for higher dimensions and other test-
functions?

ES clearly outperformed TS on the sphere due to its self-adaptiveness. Nev-
ertheless, there may be other environments (problem designs), in which a hybrid
approach is beneficial (noise, multi-modality, combinatorial optimization prob-
lems). Following the methodology presented in this paper, we are seeking for
environments in which the step-size adaptation does not work and hybrid ap-
proaches can be improve the performance.

Evolution Strategies and Threshold Selection 115

References

1. H. H. Hoos and T. Stützle, Stochastic Local Search—Foundations and Applications.
Elsevier, 2005.

2. D. G. Mayo, Error and the Growth of Experimental Knowledge. The University
of Chicago Press, 1996.

3. T. Bartz-Beielstein and S. Markon, “Tuning search algorithms for real-world appli-
cations: A regression tree based approach,” in Proc. 2004 Congress on Evolutionary
Computation (CEC’04), Portland OR, G. W. Greenwood, Ed., vol. 1. Piscataway
NJ: IEEE Press, 2004, pp. 1111–1118.

4. T. Bartz-Beielstein, K. E. Parsopoulos, and M. N. Vrahatis, “Design and analy-
sis of optimization algorithms using computational statistics,” Applied Numerical
Analysis & Computational Mathematics (ANACM), vol. 1, no. 2, pp. 413–433,
2004.

5. C. Lasarczyk and W. Banzhaf, “Total synthesis of algorithmic chemistries,” in
GECCO 2005: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, 2005, in print.

6. T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss, “Sequential parameter optimiza-
tion,” in Proc. 2005 Congress on Evolutionary Computation (CEC’05), Edinburgh.
Piscataway NJ: IEEE Press, 2005, in print.

7. H.-P. Schwefel, Evolution and Optimum Seeking, ser. Sixth-Generation Computer
Technology. New York: Wiley Interscience, 1995.

8. I. Hacking, Representing and intervening. Cambridge University Press, 1983.
9. I. Rechenberg, Evolutionsstrategie. Optimierung technischer Systeme nach Prinzip-

ien der biologischen Evolution. Stuttgart: frommann-holzboog, 1973.
10. S. Markon, D. V. Arnold, T. Bäck, T. Beielstein, and H.-G. Beyer, “Thresholding

– A selection operator for noisy ES,” in Proc. 2001 Congress on Evolutionary
Computation (CEC’01), Seoul, J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu,
Eds. Piscataway NJ: IEEE Press, 2001, pp. 465–472.

11. J. Matyáš, “Random Optimization,” Automation and Remote Control, vol. 26,
no. 2, pp. 244–251, 1965.

12. E. C. Stewart, W. P. Kavanaugh, and D. H. Brocker, “Study of a global search
algorithm for optimal control,” in Proceedings of the 5th International Analogue
Computation Meeting, Lausanne, Aug.-Sept. 1967, pp. 207–230.

13. G. Dueck and T. Scheuer, “Threshold accepting: a general purpose optimization
algorithm appearing superior to simulated annealing,” Journal of Computational
Physics, vol. 90, pp. 161–175, 1990.

14. T. Bartz-Beielstein, “New experimentalism applied to evolutionary computation,”
Ph.D. dissertation, University of Dortmund, April 2005.

15. H. H. Hoos, “Stochastic local search – methods, models, applications,” Ph.D. dis-
sertation, Technische Universität Darmstadt, 1998.

16. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence prop-
erties of the Nelder–Mead simplex method in low dimensions,” SIAM J. on Opti-
mization, vol. 9, no. 1, pp. 112–147, 1998.

A Hybrid GRASP with Data Mining for the
Maximum Diversity Problem

L.F. Santos, M.H. Ribeiro, A. Plastino�, and S.L. Martins��

Universidade Federal Fluminense, Departamento de Ciência da Computação
Niterói, RJ, Brazil

{lsantos, mribeiro, plastino, simone}@ic.uff.br

Abstract. The maximum diversity problem (MDP) consists in identi-
fying, in a population, a subset of elements, characterized by a set of
attributes, that present the most diverse characteristics among them-
selves. The identification of such solution is an NP-hard problem. In this
work, we propose a hybrid GRASP metaheuristic for the MDP that in-
corporates a data mining process. Data mining refers to the extraction
of new and potentially useful knowledge from datasets in terms of pat-
terns and rules. We believe that data mining techniques can be used to
extract patterns that represent characteristics of sub-optimal solutions
of a combinatorial optimization problem. Therefore these patterns can
be used to guide the search for better solutions in metaheuristics proce-
dures. Performance comparison between related work and the proposed
hybrid heuristics is provided. Experimental results show that the new
hybrid GRASP is quite robust and, mainly, this strategy is able to find
high-quality solutions in less computational time.

1 Introduction

Given a set of n elements P = {1, . . . , n} and a number m, 1 < m < n, the
maximum diversity problem (MDP) [4,5,6] consists in identifying a subset M
with m elements from the population P , so that these elements present the
maximum possible diversity among them.

Let ik, k ∈ L = {1, . . . , l}, be the l attributes associated with each element
i. The measure of diversity dij between a pair of elements (i, j) is calculated by
some function applied on their attributes. The choice of this function depends
on the context of the problem instantiation. The MDP can then be formulated
as: Maximize z =

∑n−1
i=1

∑n
j=i+1 dijxixj , subject to

∑n
i=1 xi = m, where xi is a

binary variable indicating if an element i is selected to be a member of M .
Many applications [10] can be solved using the resolution of this problem,

such as human resource management, measure of biodiversity, and VLSI design.
This problem belongs to the class of NP-hard problems as shown by Glover

et al. [5]. In this work they also presented a mixed integer zero-one formulation
for this problem, used to solve small instances by exact methods.
� Work sponsored by CNPq research grants 300879/00-8 and 475124/03-0.

�� Work sponsored by CNPq research grant 475124/03-0.

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 116–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Hybrid GRASP with Data Mining for the MDP 117

Since the MDP is an NP-hard problem, some heuristics were developed to
obtain approximate solutions. Constructive and destructive heuristics were pre-
sented by Glover et al. [6], which were evaluated using instances with different
population sizes (maximum value was 30). The proposed heuristics obtained re-
sults close (2%) to the ones obtained by the exact algorithm, but much faster.
Weitz and Lakshminarayanan [17] developed heuristics to find groups of students
with the most possible diverse characteristics, such as nationality, age, and grad-
uation level. They tested the heuristics using instances based on real data and
implemented an exact algorithm for solving them.

Many works have been developed using the metaheuristic GRASP (Greedy
Randomized Adaptive Search Procedure) [3] to solve the MDP. At first, good
results for small instances of the problem were obtained by Ghosh [4]. Andrade
et al. [1] developed a new construction phase for this GRASP and showed results
for instances randomly created with a maximum population of 250 individuals.
This proposal was able to find solutions better than the ones found by Ghosh’s
algorithm. In [2], Andrade et al. showed that incorporating path-relinking to the
pure GRASP developed in [1] enabled to achieve better results. Silva et al. [15]
elaborated new construction and local search heuristics and combined them to
generate several GRASP algorithms. In order to evaluate these strategies, in-
stances were created by the authors for populations of maximum size equal to
500 individuals. They compared their algorithms with the ones developed by
Ghosh [4] and Andrade et al. [1] and showed that better results were achieved.

In this work, we propose a hybrid GRASP heuristic for the MDP, which
incorporates a data mining process. We believe that data mining techniques
can be used to extract patterns that represent characteristics of sub-optimal
solutions of a combinatorial optimization problem. Therefore these patterns can
be used to guide the search for better solutions in metaheuristics procedures. In
[14], we obtained good results with this kind of hybridization for the Set Packing
Problem. Basically, after GRASP executes a significant number of iterations, the
data mining process extracts patterns from an elite set of solutions that guide
the following GRASP iterations. Solutions are represented by sets of items and
patterns are defined as subsets of items that occurs in a significant number of
solutions. The process of mining these patterns is the well known problem called
frequent itemset mining, a sub-problem of association rule mining [7,9]. The
GRASP used to develop the hybrid strategy is based on the KLD strategy, a
state-of-the-art algorithm for the MDP presented by Silva et al. [15].

In Sec. 2, we describe the KLD GRASP heuristic for the MDP presented
in [15]. Data mining concepts are presented in Sec. 3. The hybridization of
GRASP, proposed in this work, is defined in Sec. 4. The experimental results
are reported and discussed in Sec. 5. Concluding remarks are made in Sec. 6.

2 GRASP Heuristic for the MDP

GRASP [3] is an iterative process, where each iteration consists of two phases:
construction and local search. A feasible solution is built in the construction

118 L.F. Santos et al.

phase, and then its neighborhood is explored by the local search. The result is
the best solution found over all iterations.

The construction phase of GRASP is an iterative process where, at each
iteration, the elements c ∈ C, which are the elements that do not belong to the
solution, are evaluated by a greedy function g : C → �+, that estimates the gain
of including it in the partial solution. They are ordered by their estimated value
in a list called restricted candidate list (RCL) and one of them is randomly chosen
and included in the solution. The size of the RCL is limited by a parameter α.
For a maximization problem, only the elements whose g values are in the range
[(1 − α)gmax, gmax] are placed in RCL, where gmax is the maximum value of
g obtained for all elements in C. This iterative process stops when a feasible
solution is obtained.

The solutions generated by the construction phase are not guaranteed to
be locally optimal. So, a local search is performed to attempt to improve each
constructed solution. It works by successively replacing the current solution by
a better one from its neighborhood, until no more better solutions are found.

Next, we describe the pure GRASP proposed by Silva et al. [15], called KLD,
which is the algorithm selected to be hybridized with data mining techniques.

2.1 KLD Algorithm

Usually, the local search phase demands great computational effort and execution
time, so the construction phase plays an important role to diminish this effort
by supplying good starting solutions for the local search. The KLD algorithm
is defined by a construction procedure developed by Silva et al. [15] which is
combined with the local search developed by Ghosh [4].

The construction procedure is based on two existing techniques: filtering of
constructed solutions [13] and reactive GRASP proposed in [12].

Filtering of constructed solutions leads to a more greedy construction. For
each GRASP iteration, the construction algorithm is executed several times gen-
erating different solutions and only the best solution is selected to be used as
the initial solution for the local search phase.

Prais and Ribeiro [12] proposed the procedure called reactive GRASP, for
which the parameter α used in the construction phase is self adjusted for each
iteration. The aim is to associate higher probabilities to values of α that lead to
better solutions and lower ones to values of α that guide to worse solutions.

The KLD (K Largest Distances) algorithm uses both techniques described
before. This algorithm constructs an initial solution by randomly selecting an
element from a RCL of size K at each construction iteration. The RCL is created
by first computing, for each element i ∈ P , the sum si of the diversity values
dij , j ∈ P\{i}, then selecting the K elements i that exhibit the largest values
of si.

The procedure developed to implement the reactive GRASP starts consid-
ering m it to be the total number of GRASP iterations. In the first block of
iterations B1 = 0.4m it, four different values for K ∈ {K1, K2, K3, K4} are
evaluated by dividing the block into four equal intervals ci, i = 1, . . . , 4. The

A Hybrid GRASP with Data Mining for the MDP 119

value Ki is used for all iterations belonging to interval ci. The values of Ki

are shown in Table 1, where μ = (n − m)/2. After the execution of the last
iteration of block B1, the quality of the solutions obtained for each Ki is evalu-
ated. The average diversity value zmi =

∑
1≤q≤0.1m it z(soliq) for the solutions

soliq, i = 1, . . . , 4; q = 1, . . . , 0.1m it; is obtained for each Ki. The values Ki are
stored in a list LK = {lki}, i = 1, . . . , 4, ordered by their zmi values.

Table 1. K values for block B1

i ci K

1 [1, . . . , 0.1m it] m + μ − 0.2μ
2 (0.1m it, . . . , 0.2m it] m + μ − 0.1μ
3 (0.2m it, . . . , 0.3m it] m + μ + 0.1μ
4 (0.3m it, . . . , 0.4m it] m + μ + 0.2μ

Then the next block of iterations B2 = 0.6m it is divided into four intervals
yi, each one with different number of iterations. For each interval a value for K
is adopted as shown in Table 2. In this way, the values Ki that provide better
solutions are used in a larger number of iterations.

Table 2. K values for block B2

i yi K

1 (0.4m it, . . . , 0.64m it] lk1

2 (0.64m it, . . . , 0.82m it] lk2

3 (0.82m it, . . . , 0.94m it] lk3

4 (0.94m it, . . . , m it] lk4

At each GRASP iteration, the filter technique is applied by constructing two
solutions and only the best solution is sent to the local search procedure.

The pseudo-code, including the description of the procedure for the construc-
tion phase using K largest distances heuristic, is given in Fig. 1.

In line 1, the cost of the best solution found in the execution of max sol f ilter
iterations is initialized. The value K to be used to build the restricted candidate
list (RCL) is calculated by the procedure det K in line 2. This procedure defines
the value for K, implementing the reactive GRASP described before. In line 3,
the RCL is built. From line 4 to line 15, the construction procedure is executed
max sol f ilter times and only the best solution is returned to be used as an
initial solution by the local search procedure. From line 6 to line 10, a solution is
constructed by the random selection of an element from RCL. In lines 11 to 14,
the best solution found by the construction procedure is updated. If the GRASP
iteration belongs to B1 block, the cost of the solution found using the selected

120 L.F. Santos et al.

procedure constr KLD(it GRASP,m it, max sol filter, n, m)
1. best cost sol ← 0;
2. K ← det K(it GRASP,m it, LK);
3. RCL ← Build RCL(K, n);
4. for j = 1, . . . , max sol filter do
5. sol ← {};
6. for k = 1, . . . , m do
7. Randomly select an individual e∗ from RCL;
8. sol ← sol ∪ {e∗};
9. RCL ← RCL − {e∗};

10. end for;
11. if (z(sol) > best cost sol) then do
12. sol constr ← sol;
13. best cost sol ← z(sol);
14. end if
15. end for;
16. if (it GRASP < 0.4m it) then do
17. Update Sol K(K, sol eval, z(sol constr));
18. end if;
19. if (it GRASP == 0.4m it) then do
20. LK ← Build LK(sol eval);
21. end if;
22. return sol constr.

Fig. 1. Construction procedure used to implement the KLD heuristic

K is stored in line 17. When the first block B1 of iterations ends, the values Ki

are evaluated and put in the list LK sorted in descending order, in line 20.
The local search strategy employed is the same as the one developed by

Ghosh [4] and is described next. The neighborhood of a solution is the set of all
solutions obtained by replacing an element in the solution by another that does
not belong to the set of its elements. The incumbent solution M is initialized with
the solution obtained by the construction phase. For each i ∈ M and j ∈ P \M ,
the improvement due to exchanging i by j, Δz(i, j) =

∑
u∈M{i}(dju − diu) is

computed. If for all i and j, Δz(i, j) < 0, the local search is terminated, because
no exchange will improve z. Otherwise, after the elements of the pair (i, j) that
provides the maximum Δz(i, j) are interchanged, a new incumbent solution M
is created and the local search is performed again.

3 Data Mining

Data mining refers to the extraction of new and potentially useful knowledge
from datasets in terms of patterns and rules. Data mining processes have been
used in a large variety of fields such as marketing, finance, health care, education,
and security. The main kinds of rules and patterns mined from datasets are:
association rules, sequential patterns, classification rules, and data clusters [9].

A Hybrid GRASP with Data Mining for the MDP 121

Association rules describe relationships among data items of a specific knowl-
edge domain, which are hidden in large datasets. Market basket analysis is a typ-
ical application of this technique and consists in identifying relationships among
products that significantly occur in customers purchases.

An association rule, defined over a set of items I = {i1, i2, . . . , in}, is an
implication of the form X ⇒ Y , where X ⊂ I, Y ⊂ I, X = ∅, Y = ∅, and
X ∩Y = ∅. Let D be a set of transactions defined over I, where each transaction
t is a subset of I (t ⊆ I). Then, the rule X ⇒ Y holds in database D with
support s and confidence c if, respectively, s% of the transactions in D contain
X ∪ Y , and c% of the transactions in D that contain X also contain Y .

The problem of extracting association rules from a transactional database is
commonly broken into two phases. Let minsup and minconf be, respectively,
the user specified minimum support and confidence. The first phase, which char-
acterizes the frequent itemset mining (FIM) problem, consists in identifying all
frequent itemsets, i.e., sets of items that occur in at least minsup% of the data-
base transactions. A frequent itemset is called maximal if it has no superset that
is also frequent. The second phase outputs, for each identified frequent itemset
Z, all association rules A ⇒ B with confidence greater or equal to minconf ,
such that A ⊂ Z, B ⊂ Z, and A ∪ B = Z. The FIM phase demands more
computational effort than the second one and has been intensively addressed [7].

In this work, the useful patterns to be mined are sets of elements that com-
monly appear in sub-optimal solutions of the MDP. In this frequent itemset
mining application, the set of items I = {i1, i2, . . . , in} is the population P of
the MDP. Each transaction t of the database D represents a sub-optimal solution
of the MDP. A frequent itemset mined from D with support s% represents a set
of elements that occur in s% of the elite solutions.

In order to mine the maximal frequent itemsets to be used in the proposed
hybrid GRASP, we have used the FPmax* algorithm1 [8].

4 The Hybrid GRASP for the MDP

In this section, we describe the strategy used to hybridize the GRASP meta-
heuristic to incorporate a data mining process. The basic procedure is composed
by two phases. The first one (elite set generation phase) consists in executing
pure GRASP iterations for n iter iterations to obtain a set S of different solu-
tions. Let D be the set containing the d best solutions of S. To extract a set
of patterns R from this elite set of solutions we apply an algorithm to mine
the frequent itemsets from D. Next, a second phase of GRASP (hybrid phase)
is executed also for n iter iterations using an adapted construction phase that
builds a solution based on some pattern p ∈ R, i.e., each constructed solution
will contain the elements of a pattern p ∈ R. The local search for each iteration
is the same as that described in Subsec. 2.1.

The pseudo-code of the new adapted construction procedure is presented in
Fig. 2. The parameter p will guide the construction of the initial solution which
1 Available at http://fimi.cs.helsinki.fi.

122 L.F. Santos et al.

procedure new constr KLD(it GRASP, m it, max sol filter, n, m, p)
1. best cost sol ← 0;
2. K ← det K(it GRASP, m it, LK);
3. RCL ← Build RCL(K, n);
4. for j = 1, . . . , max sol filter do
5. sol ← p;
6. for k = 1, . . . , (m − |p|) do
7. Randomly select an individual e∗ from RCL;
8. sol ← sol ∪ {e∗};
9. RCL ← RCL − {e∗};

10. end for;
11. if (z(sol) > best cost sol) then do
12. sol constr ← sol;
13. best cost sol ← z(sol);
14. end if
15. end for;
16. if (it GRASP < 0.4m it) then do
17. Update Sol K(K, sol eval, z(sol constr));
18. end if;
19. if (it GRASP == 0.4m it) then do
20. LK ← Build LK(sol eval);
21. end if;
22. return sol constr.

Fig. 2. New adapted construction procedure for GRASP heuristic for MDP

will contain all elements of p. In lines 2 and 3, the value of K and the RCL
are defined as in the original construction algorithm, except that the RCL does
not contain the elements in p. As in the algorithm showed in Subsec. 2.1, the
construction phase is executed max sol f ilter times, and only the best solution
found is sent to the local search. In line 5, the initial solution is defined with all
elements of p. From lines 6 to 10 we apply the same procedure presented in lines
6 to 10 of Fig. 1 to obtain the other m − |p| elements of the solution. At the
end, the constructed solution contains all elements of p and some other elements
selected by the construction procedure. In lines 11 to 21, the same procedures
presented in lines 11 to 21 in Fig. 1 are performed to update the better solution
and to set the values of K.

The data mining strategy adopted to extract a set of patterns R from the
elite set of solutions D uses the algorithm FPmax∗ to mine the maximal frequent
itemsets from D. This algorithm is executed d−1 times, each one using a different
value for support s ∈ S = {2, . . . , d}, where d = |D|. All patterns generated by
each execution are merged in a set F and the r largest size patterns obtained
from F are selected to generate R. The iterations of the GRASP second phase
are divided into r intervals, and, for each interval, one different pattern p ∈ R is
used for the construction procedure. As defined in Sec. 3, a frequent itemset is
called maximal if it has no superset that is frequent. Adopting maximal frequent
itemsets we guarantee that a pattern is not a subset of another one leading to a
more effective diversification.

A Hybrid GRASP with Data Mining for the MDP 123

According to the taxonomy of hybrid metaheuristics proposed in [16], our
work could be classified as a high-level and relay hybrid metaheuristic. It is
considered high-level since the data mining technique and the GRASP are self-
contained and it is a relay hybridization because GRASP, the data mining tech-
niques, and GRASP again are applied in a pipeline fashion.

5 Computational Results

The computational experiments were performed on a set of different test prob-
lems with distinct characteristics [15]. We selected from this work the larger and
more difficult instances to solve. Each one consists of a population P with size n
and a diversity matrix, which contains the diversity dij between elements i and
j of P . The instances have populations sizes n = 200, 300, 400, 500. We have also
produced four new instances with population size n = 600, using the generator
developed in [15]. For all instances, tests were performed to find subsets M of
sizes 10%, 20%, 30%, and 40% of the population size.

We obtained the source code of KLD from its authors, which is an improved
version of KLD presented in [15]. The hybrid version was implemented incorpo-
rating the data mining technique into this same code.

The algorithms were implemented in C and compiled with gcc 2.96. The
tests were performed on a 1.7 GHz Intel Pentium 4 with 256 Mbytes of RAM.

In Table 3, we show the CPU times observed for the KLD GRASP and the
hybrid GRASP (DM-GRASP) using all instances. Both strategies executed 500
iterations. The first and second phases of DM-GRASP executed 250 iterations
each one. The elite set D, from which patterns were mined, had size 10, and the
set of patterns R had size 10.

The first and second columns identify the parameters of each instance: the
size n of the population and the number m of elements to be selected. For all
instances, each procedure was executed ten times with different random seeds.
The third and sixth columns show the average time (in seconds) for the KLD
and DM-GRASP strategies, respectively. For these average values, the bold value
indicates the best behavior, represented by the smaller amount of time. The
fourth and seventh columns present the time (in seconds) of the fastest execution
of KLD and DM-GRASP, among the ten tests. The fifth and eighth columns show
the slowest executions of each strategy.

Based on the average values, we observe that DM-GRASP executed faster
than KLD heuristic in all tests. The relative difference ranged from 2.3% to
10.0%. On average, DM-GRASP was 6.8% faster than KLD. Indeed, in DM-
GRASP, the adapted construction procedure of the second phase takes less time
to execute because some elements are already set in the solution (elements from
the mined patterns). Then a smaller number of elements must be processed and
inserted into the constructed solution. Besides, we suppose that the adapted con-
struction procedure of DM-GRASP generates better initial solutions so that the
local search takes less time to converge to a local optimal solution. We also ob-
serve in Table 3 that, in 18 instances, the slowest execution time of DM-GRASP
(eighth column) is lower than the average time of the KLD (third column).

124 L.F. Santos et al.

Table 3. Average, best and worst computational times for KLD and DM-GRASP

Instance KLD DM-GRASP
n m Avg. Best Worst Avg. Best Worst

200 20 32.9 30.1 39.2 30.8 30.3 30.9
200 40 136.0 133.0 142.7 130.5 125.8 145.7
200 60 345.7 340.5 371.4 332.0 323.3 347.1
200 80 555.0 545.0 563.7 528.7 519.6 537.9
300 30 223.0 210.5 237.9 212.1 203.9 220.2
300 60 928.9 903.3 956.6 859.4 844.0 883.4
300 90 2041.1 1992.5 2133.5 1867.1 1842.0 1907.7
300 120 3273.2 3214.7 3344.2 3062.0 2960.0 3119.8
400 40 807.2 795.5 819.4 775.8 760.9 782.0
400 80 3403.7 3340.1 3441.4 3090.1 3035.7 3221.5
400 120 7784.3 7669.1 7996.2 7006.4 6888.2 7160.4
400 160 11170.1 10928.4 11440.3 10066.2 9867.7 10314.9
500 50 1997.9 1968.3 2036.9 1940.8 1926.4 1965.3
500 100 9206.0 8986.4 9302.2 8343.5 8203.2 8463.6
500 150 19688.6 19500.6 19911.8 17742.1 17481.7 18062.9
500 200 29127.0 28576.3 29422.4 26366.0 25393.0 26971.0
600 60 4184.4 4151.3 4225.3 4089.1 4044.5 4132.7
600 120 17710.9 17569.0 17895.5 16236.8 16073.5 16543.5
600 180 40139.3 39802.1 40525.5 37109.8 36053.4 37989.4
600 240 59631.4 59370.9 59997.5 55743.2 55346.6 56888.7

In Table 4, we show the quality results for both KLD and DM-GRASP ob-
tained over the same tests. The first and second columns identify the parame-
ters of each instance. For all tests, each procedure was executed ten times. The
third and sixth columns show the average diversity values obtained by KLD
and DM-GRASP strategies. For these average values, when two different results
are reached, a bold value indicates the best average found. The fourth and sev-
enth columns present the standard deviation of the obtained diversity values.
The fifth and eighth columns show the best diversity values achieved by both
KLD and DM-GRASP strategies. In order to compare the obtained results to
those reached by the other proposed strategies in the literature, the last col-
umn shows the best known value for each test. When different best diversity
values are reached, an underlined value indicates the best one. The instances
with population size 600 are new and the best known values are not indicated.

Considering the average values of the 20 tests, the two algorithms obtained
the same result in 4 cases. In those 16 tests in which different average diversity
values were reached, DM-GRASP heuristic found better results than KLD in
10 tests. The standard deviation values related to DM-GRASP executions were
less or equal to the ones of KLD in 14 instances. In 11 cases, from the 16 tests
where a best known result is shown, both algorithms were able to find the best
known value. For one instance they did not reach the best result of the literature
and, in three instances, they found new best values. In one case, only the DM-
GRASP strategy reached the best known value. These results show that the new

A Hybrid GRASP with Data Mining for the MDP 125

Table 4. Average and best diversity values obtained by KLD and DM-GRASP

Instance KLD DM-GRASP Best known
n m Avg. S.D. Best Avg. S.D. Best

200 20 1246.6 1.3 1247 1246.6 0.6 1247 1247
200 40 4450.0 0.0 4450 4449.0 0.9 4450 4450
200 60 9437.0 0.0 9437 9437.0 0.0 9437 9437
200 80 16225.0 0.0 16225 16225.0 0.0 16225 16225
300 30 2688.4 4.1 2694 2686.8 2.3 2694 2694
300 60 9680.9 8.4 9689 9685.6 2.8 9689 9689
300 90 20735.9 6.0 20743 20735.2 6.0 20743 20734
300 120 35880.3 1.2 35881 35880.4 1.0 35881 35881
400 40 4652.0 2.6 4658 4651.6 4.7 4658 4658
400 80 16941.5 12.7 16956 16943.4 10.6 16956 16956
400 120 36300.6 12.1 36317 36304.0 7.8 36317 36315
400 160 62455.3 15.0 62475 62467.8 11.2 62483 62483
500 50 7117.8 6.2 7130 7116.9 8.3 7129 7131
500 100 26248.5 7.9 26258 26251.8 8.2 26258 26254
500 150 56571.9 0.3 56572 56571.9 0.3 56572 56572
500 200 97330.0 10.1 97344 97332.5 10.0 97344 97344
600 60 10120.1 15.4 10150 10123.5 13.3 10149 new instance
600 120 37007.7 15.6 37035 37024.8 21.6 37058 new instance
600 180 80392.5 12.8 80410 80394.3 10.0 80407 new instance
600 240 139028.5 11.8 139048 139024.0 13.7 139040 new instance

hybrid GRASP is quite robust. The DM-GRASP is competitive when compared
to KLD, a state-of-the-art algorithm for the MDP. Besides, this strategy is able
to find high-quality solutions in less computational time.

Since DM-GRASP was always faster than KLD, to conduct a fair comparison
between them, we let DM-GRASP run the same time KLD took for each differ-
ent combination of instance and random seed. Table 5 shows that DM-GRASP
outperforms KLD when both are allowed to run the same execution time. Based
on the average values: they reached the same result in 2 instances, DM-GRASP
found better results in 13 tests, and KLD performed better than DM-GRASP
in just 5 instances.

6 Concluding Remarks

In this work, we proposed a hybrid GRASP metaheuristic that incorporates a
data mining process for solving the maximum diversity problem.

One of our goals was to evidence that using a data mining technique can
improve results obtained by GRASP. Computational experiments showed that
employing frequent patterns mined from an elite set in the construction phase
conducted GRASP to achieve better solutions for the MDP. The time analysis
showed that the data mining strategy accelerates the process of finding a good

126 L.F. Santos et al.

Table 5. Average and best diversity values obtained by KLD and DM-GRASP exe-
cuting the same time

Instance KLD DM-GRASP Best known
n m Avg. S.D. Best Avg. S.D. Best

200 20 1246.6 1.3 1247 1246.0 2.2 1247 1247
200 40 4450.0 0.0 4450 4449.4 1.0 4450 4450
200 60 9437.0 0.0 9437 9437.0 0.0 9437 9437
200 80 16225.0 0.0 16225 16225.0 0.0 16225 16225
300 30 2688.4 4.1 2694 2687.9 5.7 2694 2694
300 60 9680.9 8.4 9689 9685.7 2.7 9689 9689
300 90 20735.9 6.0 20743 20735.2 6.0 20743 20734
300 120 35880.3 1.2 35881 35880.4 1.0 35881 35881
400 40 4652.0 2.6 4658 4652.2 3.2 4658 4658
400 80 16941.5 12.7 16956 16943.8 10.4 16956 16956
400 120 36300.6 12.1 36317 36306.3 8.1 36317 36315
400 160 62455.3 15.0 62475 62467.8 11.2 62483 62483
500 50 7117.8 6.2 7130 7119.5 7.8 7130 7131
500 100 26248.5 7.9 26258 26252.4 7.1 26258 26254
500 150 56571.9 0.3 56572 56572.0 0.0 56572 56572
500 200 97330.0 10.1 97344 97333.1 9.8 97344 97344
600 60 10120.1 15.4 10150 10123.5 13.4 10149 new instance
600 120 37007.7 15.6 37035 37025.9 20.1 37058 new instance
600 180 80392.5 12.8 80410 80399.9 9.2 80411 new instance
600 240 139028.5 11.8 139048 139025.1 13.1 139040 new instance

solution by the GRASP procedure. Under the same execution time limit, the
hybrid GRASP performed even better than pure GRASP.

In the hybrid proposal, the used patterns are mined just once. We believe
that an improvement may come from mining the patterns not only once during
the whole process, but alternating GRASP iterations and the mining procedure,
which may allow the extraction of patterns from refined elite solutions.

We believe that the pattern size may influence the results, so we intend to
improve the hybrid strategy defining a policy to choose an adequate pattern size.

Another future work can be a cooperative parallelization of GRASP. This ap-
proach would allocate a processor dedicated to mine patterns from the solutions
generated by the other processors executing hybrid GRASP iterations.

References

1. Andrade, P. M. F., Plastino, A., Ochi, L. S., Martins, S. L.: GRASP for the max-
imum diversity problem, Procs. of MIC 2003, CD-ROM Paper: MIC03 15, (2003).

2. Andrade, M. R. Q., Andrade, P. M. F., Martins, S. L., Plastino, A.: GRASP
with path-relinking for the maximum diversity problem, 4th Intl. Workshop on
Experimental and Efficient Algorithms, LNCS 3503 (2005), 558–569.

3. Feo, T. A., Resende, M. G. C.: Greedy randomized adaptive search procedures,
Journal of Global Optimization 6 (1995), 109–133.

A Hybrid GRASP with Data Mining for the MDP 127

4. Ghosh, J. B.: Computational aspects of the maximum diversity problem, Opera-
tions Research Letters 19 (1996), 175–181.

5. Glover, F., Hersh, G., McMillan, C.: Selecting subsets of maximum diversity, MS/IS
Report No. 77-9, University of Colorado at Boulder (1977).

6. Glover, F., Kuo, C-C., Dhir, K. S.: Integer programming and heuristic approaches
to the minimum diversity problem, J. of Bus. and Management 4 (1996), 93–111.

7. Goethals, B., Zaki, M. J.: Advances in frequent itemset mining implementations:
Introduction to FIMI’03. IEEE ICDM FIMI Workshop (2003).

8. Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. IEEE
ICDM FIMI Workshop (2003).

9. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishing (2000).

10. Kochenberger, G., Glover, F.: Diversity data mining, Working Paper, The Univer-
sity of Mississipi (1999).

11. Orlando, S., Palmerimi, P., Perego, R.: Adaptive and resource-aware mining of
frequent sets. IEEE Intl. Conf. on Data Mining (2002), 338–345.

12. Prais, M., Ribeiro, C. C.: Reactive GRASP: An application to a matrix decompo-
sition problem in TDMA traffic assignment, INFORMS Journal on Computing 12
(2000), 164–176.

13. Resende, M. G. C., Ribeiro, C. C.: Greedy randomized adaptive search procedures,
Handbook of Metaheuristics (F. Glover & G. Kochenberger eds.) (2003), 219–249.

14. Ribeiro, M. H., Trindade, V., Plastino, A., Martins, S.: Hybridization of GRASP
metaheuristic with data mining techniques, Workshop on Hybrid Metaheuristics in
conjunction with the 16th European Conf. on Artificial Intelligence (2004), 69–78.

15. Silva, G. C., Ochi, L. S., Martins, S. L.: Experimental comparison of greedy ran-
domized adaptive search procedures for the maximum diversity problem, 3rd Intl.
Workshop on Experimental and Efficient Algorithms, LNCS 3059 (2004), 498–512.

16. E. G. Talbi: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8 (2002),
541–564.

17. Weitz, R., Lakshminarayanan, S.: An empirical comparison of heuristic methods
for creating maximally diverse groups, J. of the Op. Res. Soc. 49 (1998), 635–646.

A New Multi-objective Particle Swarm
Optimization Algorithm Using Clustering

Applied to Automated Docking

Stefan Janson and Daniel Merkle

Department of Computer Science, University of Leipzig,
Augustusplatz 10-11, D-04109 Leipzig, Germany
{janson, merkle}@informatik.uni-leipzig.de

Abstract. In this paper we introduce the new hybrid Particle Swarm
Optimization algorithm for multi-objective optimization ClustMPSO.
We combined the PSO algorithm with clustering techniques to divide
all particles into several subswarms. Strategies for updating the personal
best position of a particle, for selection of the neighbourhood best and
for swarm dominance are proposed. The algorithm is analyzed on both
artificial optimization functions and on an important real world problem
from biochemistry. The molecule docking problem is to predict the three
dimensional structure and the affinity of a binding of a target receptor
and a ligand. ClustMPSO clearly outperforms a well-known Lamarckian
Genetic Algorithm for the problem.

1 Introduction

Particle swarm optimization is a population based metaheuristic especially use-
ful for problems with a continuous, multi-dimensional search space. Real world
problems often have the additional property that they have multiple objectives. If
for a single-objective problem one is interested not only in the very best solution,
but in several very good solutions, it may make sense to reformulate the single-
objective problem as a multi-objective problem. A biochemistry problem of this
kind is molecular docking. Molecular docking is successfully used in rational
drug design, as it is a way to find potential drugs and is therefore of great indus-
trial importance. It is widely accepted that drug activity is obtained by binding
the drug molecule to a receptor macromolecule. Several approaches exist to at-
tack the problem but still the approaches need immense computational effort
to predict docked conformations [2,11]. Especially the class of docking simula-
tion approaches is known to be computationally expensive. One important tool
which uses this approach is Autodock [7]. Several random search algorithms are
incorporated into Autodock 3.05. A Lamarckian Genetic Algorithm was shown
empirically to perform best. In this report we will reformulate the molecular
docking problem as a multi-objective optimization problem and use a hybrid
of clustering and Particle Swarm Optimization (PSO) algorithm to successfully
tackle the problem. Furthermore, the properties of the hybrid algorithm will be
analyzed on artificial test functions.

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 128–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Multi-objective Particle Swarm Optimization Algorithm 129

In Section 2 we give a brief introduction to PSO and present ClustMPSO and
its features. In Section 3 we will define the molecule docking problem and present
how ClustMPSO can be used to successfully tackle the problem. Experiments
on artificial functions and for the molecule docking problem are presented in
Section 4. Conclusions are given in Section 5.

2 Particle Swarm Optimization

The original Particle Swarm Optimization algorithm was inspired by the behav-
iour of flocking birds [5]. A swarm of particles is searching for an optimum in a
real-valued, multi-dimensional search space, given by an optimization function or
provided by a specific application. Each particle is influenced by its own previous
search experience and the information shared by other members of the swarm.
The velocity of each particle is updated according to these points of attraction
and the particle moves with the newly specified velocity.

A swarm consists of m particles and each particle i ∈ {1, . . . , m} is repre-
sented by its current position vector xi = (xi,1, . . . , xi,D) in the D-dimensional
problem space and its velocity vector vi = (vi,1, . . . , vi,D). The best previous po-
sition of a particle is recorded as yi = (yi,1, . . . , yi,D). In every iteration particle
i selects another particle n and uses its personal best position yn and its own yi

to update its velocity. In the original PSO algorithm every particle of the swarm
selected the global best particle (gbest) but the particles to choose from can also
be restricted to a local neighbourhood (lbest) [4].

At each iteration of a PSO algorithm, after the evaluation of the objective
function f , the personal best position of each particle i is updated, i.e., if f(xi) <
f(yi) then set yi = xi. The neighbourhood best particle n is selected and the
new velocity of each particle i is determined in every dimension d ∈ [1 : D] as
given in (1).

vi,d = w · vi,d + c1 · r1 · (yi,d − xi,d) + c2 · r2 · (yn,d − xi,d) (1)

Parameter w is called the inertia weight and it determines the influence of
the old velocity.

The acceleration coefficients c1 and c2 are responsible for the influence of the
local best position (cognitive aspect) and the neighbourhood best position (social
aspect), respectively. The random values r1 and r2 are uniformly drawn from
[0, 1]. After the velocity update the new position of particle i is then determined
by xi,d = xi,d + vi,d.

2.1 PSO for Multi-objective Optimization

The PSO algorithm has to be adjusted for the optimization of more than one
objective. The multi-objective optimization function f(x) : IRD → IRO now
returns a vector of O objective values. Hence, two solutions can no longer be
compared directly. Instead, the concept of dominance is used to compare two
solutions. A solution s1 is said to dominate solution s2 (s1 ≺ s2) if for each

130 S. Janson and D. Merkle

component of s1 and s2: s1,d ≤ s2,d (d = 1, . . . , O), with at least one strict
inequality.

Several applications of PSO to multi-objective optimization have been pro-
posed in literature, e.g. [3,12]. Most of these consider benchmark functions to
test the quality of their approaches. Our ClustMPSO is sketched in Algorithm
1. and the details are described in the following.

ClustMPSO with Multiple Swarms. Our ClustMPSO approach uses mul-
tiple swarms instead of a single one. Each of these swarms Sk has its own non-
dominated front NDk = {i ∈ Sk | � j ∈ Sk : j ≺ i} ⊆ Sk. This subset of all
the particles is used for selecting a neighbourhood best particle in equation (1).
Particles within these non-dominated fronts NDk can be dominated by particles
within other swarms. Therefore, we are interested in the total non-dominated
front ND of all particles of all swarms, S =

⋃
k Sk. This front is defined ac-

cordingly, ND = {i ∈ S | � j ∈ S : j ≺ i}. For all of the operations within a
swarm Sk only the respective non-dominated front NDk is considered, the total
non-dominated front ND is only required for determining whether a swarm is
dominated (see later).

Update of the Personal Best Position. As in the single-objective PSO algo-
rithm, a particle has to decide when to replace its personal best position y with
its current position x. In the standard PSO algorithm the personal best position
is replaced if f(x) < f(y). But in the multi-objective case this decision is not
as intuitive. Only replacing the personal best position if f(x) ≺ f(y) might be
too restrictive for certain applications, because escaping a local minimum be-
comes difficult. Instead, also in such cases where f(y) ⊀ f(x) the personal best
position can be updated. Possible approaches for this update are: 1.) This non-
deteriorating operation is permitted with a certain probability. This approach
was suggested in [12]. 2.) The update of the personal best is accepted, if the
weighted sum of all components is smaller

∑
d λdf(x)d <

∑
d λdf(y)d (recall

that f(x) and f(y) are vectors with O components). The latter approach will be
used in the real-world molecular docking problem, with λd = 1.

Neighbourhood Selection. Instead of one global best particle in each swarm
Sk, a non-dominated front NDk of particles is retained in which no two particles
mutually dominate each other and all the remaining particles are dominated by
at least one member of NDk. Particles from the non-dominated front are selected
as neighbourhood best particle n in the velocity update equation (1). Once a
particle i has chosen its neighbourhood best particle n it sticks to this choice
for nSelect iterations. Only if the selected neighbourhood best particle n drops
out of the non-dominated front, a new neighbourhood best particle is selected
earlier.

Dominated Swarms. A swarm Sk is considered to be dominated if none of
its particles is in the total non-dominated front ND. If a swarm is dominated
for maxDominated consecutive iterations, it is relocated. Therefore, a non-
dominated swarm is randomly selected and each particle of the dominated swarm
randomly selects the particle of the other swarm it is reset to; the personal best

A New Multi-objective Particle Swarm Optimization Algorithm 131

positions of the dominated particle is set to the personal best position of the
selected particle.

2.2 Clustering

Clustering is used to separate the particles into several swarms. For this we use
the K-means algorithm, which is a standard clustering method that provides
good results quickly. K-means iteratively assigns all data vectors to K clusters
C1, . . . , CK (often based on the Euclidian distance to the geometric centroid),
and recomputes cluster centroids which are then used again for assigning the data
vectors to clusters. This is repeated until there is no change in the assignment of
the data points. For ClustMPSO the data vectors are the particles’ best positions
yi or the vectors representing the objective values for the particles’ best positions
f(yi). This corresponds to clustering in search space or in objective space. All the
particles within a cluster Ck form swarm Sk. Note, that clustering in objective
space can only be effective for approaches with multiple swarms, if particles
that are close in objective space are also close in search space. This is often
not the case for real-world problems. The strategy would cluster particles from
very different areas in the search space together, and the algorithm would be
mislead. Nevertheless, for easy optimization functions this approach can be very
effective. After a clustering step the non-dominated front of a swarm has to
be updated. Recently, in [10] clustering in search space and objective space has
been used for parallelization of multi-objective Evolutionary Algorithms. In [12] a
combination of clustering and PSO was proposed. Particles of the non-dominated
front are clustered in the search space for selecting the leader of subswarms.
For this purpose the hierarchical single-connected clustering algorithm is used.
A related approach has been presented for a multi-objective PSO algorithm
in [8]. Although not clustering is used, the front is divided into several parts.
The resulting subswarms are used to cover the Pareto-optimal front with high
granularity.

3 Molecular Docking

Given a biological target receptor (a protein or DNA) and a flexible ligand (a
small molecule) the molecule docking problem is to predict the three dimensional
structure and the affinity of a binding. For a broad overview of different molecular
docking approaches see [2]. Here we will focus on docking simulation methods.
A ligand begins at a random position and explores the docking space until the
best conformation is found. From an optimization point of view such a complex
of protein and ligand has a scoring function which has to be minimized.

3.1 Theory

As scoring function an empirical binding free energy function can be used to
successfully rank complexes. Let rij be the internuclear separation of two atoms.

132 S. Janson and D. Merkle

Algorithm 1. Generic Pseudo code of ClustMPSO
Swarm S of m particles
Initialize location xi = (xi1, . . . , xiD) and velocity vi = (vi1, . . . , viD) of each particle
i ∈ S. Best position yi = xi.
Initialize centroid vector of cluster Ck to yi for a randomly selected particle i ∈ S
repeat

repeat
cluster the m particles into K different swarms. Each cluster Ck (1)
representing one swarm Sk, k = 1, . . . , K.

until required cluster quality is met
for each Swarm Sk do

for each particle i ∈ Sk do
evaluate objective function f(xi) at the particle’s location xi

update the personal best position yi (2)
end for
update non-dominated front NDk = {i ∈ Sk | � j ∈ Sk : j ≺ i}
for each particle i ∈ Sk do

if n has been selected nSelect iterations ago or n /∈ NDk then
select a neighbourhood best particle n from NDk (3)

end if
update the velocity vi in each dimension d:

vi,d = w · vi,d + c1 · r1 · (yi,d − xi,d) + c2 · r2 · (yn,d − xi,d)
compute the new location of the particle: xi,d = xi,d + vi,d

end for
end for
update total non-dominated front ND = {i ∈ S | � j ∈ S : yj ≺ yi}, S =

⋃
Sk

for each Swarm Sk do
if a particle of Sk is in ND then

Sk.dominatedCount = 0
else

Sk.dominatedCount + +
end if

end for
for each Swarm Sk do

if Sk.dominatedCount ≥ maxDominated then
relocate the swarm Sk (4)

end if
end for

until stopping criterion is met

ΔG = ΔGvdw

∑
i,j

(
Aij

r12
ij

− Bij

r6
ij

)
+ ΔGhbond

∑
i,j

E(t)
(

Cij

r12
ij

− Dij

r10
ij

+ Ehbond

)

+ΔGelec

∑
i,j

qiqj

ε(rij)rij
+ ΔGtorNtor + ΔGsol

∑
iC ,j

SiVje
(−r2

ij/2σ2)

Fig. 1. Free Energy Function used in Autodock 3.05

A New Multi-objective Particle Swarm Optimization Algorithm 133

Then the suggested empirical binding free energy function as used in Autodock
3.05 is shown in Figure 3.1. The ΔG∗ constants in the above equation are empir-
ically determined by a regression from a set of 30 complexes with known binding
constants. The first three terms in the equation are terms for molecular dynam-
ics which measure the in vacuo contributions of the binding free energy. The first
term estimates the van der Waals potential energy with typical 12-6-Lennard-
Jones parameters. The second term models the energy for hydrogen bonds using
a 12-10 hydrogen bonding term and a directional weight E(t) based on the angle
t between the probe and the target atom. Ehbond denotes the estimated average
energy of hydrogen bonding of water with a polar atom. The third term models
the electrostatic energy between two atoms with charges qi and qj . The fourth
term models the restriction of internal rotors and global rotation and translation.
As it models the loss of torsional degrees of freedom upon binding it is propor-
tional to the number of sp3 bonds Ntor. Note, that this term is constant and can
be excluded during optimization and added in a post processing step to calculate
the predicted energy of the binding. The fifth term models the desolvation term.
For each carbon atom of the ligand fragmental volumes of surrounding proteins
are weighted with an exponential function. This sum is weighted with the atomic
solvation parameter to give the final estimated desolvation energy. Variants of
the fifth term were deeply investigated in [7]. To rapidly evaluate the energy
terms Autodock 3.05 uses trilinear interpolation. For this, grid maps for each
type of atom presented in the ligand are needed, where each point in the grid
stores the potential energy of a probe atom at that position. In addition to these
affinity grid maps, an electrostatic grid map is needed which stores the Coulom-
bic interactions between the macromolecule and a probe of fixed charge. For a
much more detailed description and investigation of the free energy function and
variants of it and for tables for the used constants, see [7].

In the further sections ΔGinter denotes the intermolecular interaction energy
between the protein and the ligand, whereas ΔGintra denotes the intramolecular
interaction energy of the ligand only. For the calculation of Gintra all pairs of
atoms in the ligand are used, which have at least three bonds in between. Energy
terms that exclude the torsional free energy are called docked energies. The
docked energy term used for optimization is E = ΔGinter +ΔGintra. Note, that
in Autodock 3.05 all possible optimization algorithms aim to minimize E in a
single-objective fashion.

3.2 ClustMPSO for Molecular Docking

Usually, when searching for bindings with software tools like Autodock 3.05,
several runs are performed on the same instance. The reason for this is that
from a biochemical point of view it makes sense not only to find the very best
docking, but also interesting dockings which still have small (but maybe not
the smallest) docking energies. In such dockings the position of the ligand may
be quite different from the optimal solution. In this paper we propose a bi-
objective approach. The two objectives used are the intramolecular interaction
energy ΔGintra and the intermolecular interaction energy ΔGinter . In contrast

134 S. Janson and D. Merkle

to other real-world problems the sum of different objectives makes sense for the
molecular docking problem. Hence, the docking energy ΔGintra + ΔGinter will
be used when updating the personal best position of a particle and for comparing
results of algorithm ClustMPSO with the single objective optimization methods
of Autodock.

Same as in the Lamarckian Genetic Algorithm (LGA) and Simulated An-
nealing (SA) approach of Autodock, the number of degrees of freedom of the
optimization problem is 7 + Ntor, where Ntor is the number of rotatable bonds
of the ligand. The position of the ligand is defined by a three-dimensional vector,
the orientation is defined by a quaternion. Note that for the clustering step of
algorithm ClustMPSO only the position of the ligand is used.

4 Experiments

In this section we will at first present results on a well-known artificial function
and then apply ClustMPSO to the molecular docking problem. For all our ex-
periments we used the common PSO parameter w = 0.729 and c1 = c2 = 1.494.
The remaining ClustMPSO parameters and the specific changes to the algorithm
for each application are described later.

4.1 Artificial Functions

We applied our ClustMPSO algorithm to several standard multi-objective bench-
mark functions, where we want to achieve a large number of non-dominated
solutions quickly. Therefore, a non-dominated particle behaves differently from
a dominated one. It only accepts its current position x as new personal best
position y if x dominates y. A dominated particle also accepts x if x ≺ y
and with probability 0.5 if y ⊀ x, see Algorithm 2.. Also, a non-dominated
particle selects itself as neighbourhood best particle n in the velocity update
equation (1). The swarmsize used is m = 256 and the number of clusters
is varied in K ∈ {1, 3, 16, 32}. The other parameters are nCount = 10 and
maxDominated = 10. Note, that due to the limitation of space we only present
results on one test function in more detail and will then focus on the molecule
docking.

The artificial test function T has been proposed in [?]. (f1(x), f2(x)) has to
be minimized. The search dimension is D = 3 and xi ∈ [−5; 5].

f1(x) =
∑D−1

i=1 − 10 · e−0.2
√

x2
i +x2

i+1

f2(x) =
∑D

i=1

(
|xi|0.8 + 5 sin(x3

i)
)

The pareto front of test function T consists of three sections that correspond
to three different areas in the search space. We compared the two clustering
strategies of clustering in objective (clust-objective) or in search space (clust-
search). In Figure 2 the non-dominated solutions for K = 1 and K = 3 clusters

A New Multi-objective Particle Swarm Optimization Algorithm 135

Algorithm 2. ClustMPSO Adaptions for Artificial Optimization Functions

if f(xi) ≺ f(yi) or
(
f(yi) ⊀ f(xi) and Rand(0, 1) ≤ 0.5

)
then

yi = xi

end if

(2)

if i ∈ NDk then
n = i

else
randomly select n from NDk

end if

(3)

reset each particle i from Sk to randomly selected particle j from randomly
selected non-dominated swarm Sy : yi = yj

(4)

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F1

F2

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F1

F2

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F1

F2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

Z

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

Z

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

Z

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

X

Y

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

X

Y

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

X

Y

Fig. 2. Results of ClustMPSO on test function T; shown are the objective space (top
row) and the search space (middle and bottom row) after 500 steps; K = 1, K = 3
clustering in search space, K = 3 clustering in objective space (from left to right).

are displayed. The total number of non-dominated solutions is 229 for K = 1,
178 for K = 3 when clustering is performed in search space (left and middle
column), and 228 for K = 3 if clustering is done in objective space. It can be
clearly seen, that the distribution of the particles is much worse when using only
one swarm. The reason is that using only one swarm decreases diversity, and only
very few particles are located in the area (x ≈ 0, y ≈ 0, z), which corresponds
to the first section of the non-dominated front (comp. second and third row of

136 S. Janson and D. Merkle

Figure 2). Note also, that clustering in objective space clearly divides the non-
dominated front in its three parts - this is due to the relatively easy structure of
the artificial test function (when compared to real world applications).

Algorithm 3. ClustMPSO Adaptions for Autodock
if f(xi) ≺ f(yi) or (f(yi) ⊀ f(xi) and

∑
d f(xi)d <

∑
d f(yi)d) then

yi = xi

end if

(2)

randomly select n from NDk (3)

reset each particle i from Sk to randomly selected particle j from randomly
selected non-dominated swarm Sy : yi = yj

(4)

4.2 Docking Experiments

Test Instances and Setup. For the investigation of ClustMPSO for auto-
mated docking we used two instances. The name of the instances are according
to their corresponding code of the Brookhaven Protein Data Bank (PDB-code)
[1]. For test instance 1hvr the protein used for docking is HIV-1 protease. The
ligand is the HIV-1 protease inhibitor XK-263 that can prevent the maturation
of virions of HIV. The ligand has 10 rotatable bonds, which leads to 17 degrees
of freedom. For test instance 4cha the large molecule used for docking is chy-
motrypsin, a digestive enzyme that can perform proteolysis. The peptide which
has to be docked to chymotrypsin is Benzoyl-Ala-Asp(OGp)-amide. The ligand
has 9 rotatable bonds, resulting in 16 degrees of freedom.

For the trilinear interpolation, which is used for the evaluation of the docking
energy, grid maps with 101× 101 × 101 points and a grid spacing of 0.375 Å are
used. Note, that in [7] a grid map of 61×61×61 points and a grid spacing of 0.375
Å was used. Obviously, expanding the grid map increases the possible docking
positions and the optimization problem becomes more difficult. The size and
position of both grid maps and the target receptor molecule is shown in Figure
3 for instance 1hvr.

The ClustMPSO algorithm is adjusted as described in Algorithm 3.. For the
update of the personal best position we used the criterion based on the sum
of the components of the objective function, i.e., a new personal best position
is accepted, if

∑
d f(x)d <

∑
d f(y)d (see Section 2). Each particle (dominated

and non-dominated) selects its neighbourhood best particle n for the velocity
update equation (1) randomly from the non-dominated front NDk of the respec-
tive swarm Sk. We used a total of m = 512 particles. The number of clusters is
varied in K ∈ {1, 2, 4, 8, 16, 32, 64, 128} and the maximum number of iterations
a swarm can be dominated is maxDominated ∈ {1, 10, 50, 100, 200, 400, ∞}.
When varying the number of clusters maxDominated is 200 and when vary-
ing maxDominated we set K = 32. The duration of a selection of a specific
neighbourhood best particle is nCount = 10.

A New Multi-objective Particle Swarm Optimization Algorithm 137

Fig. 3. Molecule: Human Immunodeficiency Virus Type 1 (HIV-1) protease; large cube:
position and size of the grid map (101×101×101 points with a grid spacing of 0.375 Å)
used for our investigations; small cube: grid map used in [7] (61 × 61 × 61 points with
a grid spacing of 0.375 Å).

-20

-15

-10

-5

 0

1.500.0001.000.000500.0000

D
oc

ki
ng

 E
ne

rg
y

Number Evaluations

LGA
SA

ClustMPSO

-12

-10

-8

-6

-4

-2

 0

 2

 4

1.500.0001.000.000500.0000

D
oc

ki
ng

 E
ne

rg
y

Number Evaluations

LGA
SA

ClustMPSO

Fig. 4. Convergence behavior of SA, LGA, and ClustMPSO (K = 32,
maxDominated = 200): shown are the worst, average, and best found docking en-
ergy (10 runs); left: instance 1hvr, right: instance 4cha.

We compared our results with Simulated Annealing dockings and Lamarckian
Genetic Algorithm dockings, which were performed with Autodock 3.05. The
1hvr instance is included in the Autodock 3.05 distribution and uses the following
parameters, which were also used in [7]. Ten runs were performed for both SA
and LGA. The SA approach used 50 cycles and a maximum of 25.000 accepted
or 25.000 rejected steps, whichever came first (the total number of evaluations
is at least 1.2 million). For the LGA the number of generations was 27.000
with a population size of 50. In 6% of all evaluations a genome underwent a
Lamarckian local search with 300 iterations. The LGA was stopped after 1.5
million evaluations. The local search was based on the Solis Wets local [9] search.
For further details of the SA and GA parameters see [7] and the Autodock 3.05
example instances.

Results. Before illuminating the multi-objective behavior of ClustMPSO for au-
tomated docking, we compare algorithm ClustMPSO with the single-objective

138 S. Janson and D. Merkle

-12

-11

-10

-9

-8

-7

-6

-5

LGA1286432168421

D
oc

ki
ng

 E
ne

rg
y

Number Clusters

-12

-11

-10

-9

-8

-7

-6

-5

LGA1286432168421

D
oc

ki
ng

 E
ne

rg
y

Number Clusters

Fig. 5. Worst, average, and best found docking energy for ClustMPSO after 512.000
evaluations (10 runs) with a maximal number of clusters K ∈ {1, 2, 4, 8, 16, 32, 64, 128};
worst, average, and best found docking energy for LGA after 1.5 million evaluations;
left: instance 1hvr, right: instance 4cha.

algorithms SA and LGA with respect to the convergence behavior of the docking
energy E = ΔGinter + ΔGintra. In Figure 4 the average energy, the best energy,
and the worst energy found in 10 runs after t energy evaluations is shown. It can
be seen that ClustMPSO clearly outperforms both other approaches. On test
instance 1hvr the average performance of ClustMPSO after 1000 steps (512.000
evaluations) was -21.389 (kcal mol−1) which is better than the best result that
was found with LGA after 10 × 1.5 million evaluations (-21.384). Also on in-
stance 4cha ClustMPSO achieves much better results with less evaluations than
both other approaches. The lowest docking energy found by ClustMPSO was
-11.888, the best result found by the LGA was -10.219. The average docking
energy after 512.000 evaluations was -9.887 for the ClustMPSO approach and
-7.395 for the LGA approach. The influence of the maximal number of clus-

-22

-20

-18

-16

-14

-12

-10

-8

LGA-40020010050101

D
oc

ki
ng

 E
ne

rg
y

Maximum Dominated Iterations

-12

-11

-10

-9

-8

-7

-6

-5

LGA-40020010050101

D
oc

ki
ng

 E
ne

rg
y

Maximum Dominated Iterations

Fig. 6. Worst, average, and best found docking energy for ClustMPSO after
512.000 evaluations (10 runs) for different number of maximum dominated iterations
maxDominated ∈ {1, 10, 50, 100, 200, 400,∞} clusters; worst, average, and best found
docking energy for LGA after 1.5 million evaluations; left: instance 1hvr, right: instance
4cha.

A New Multi-objective Particle Swarm Optimization Algorithm 139

-2.15

-2.1

-2.05

-2

-1.95

-1.9

-1.85

-19.4 -19.38 -19.36 -19.34 -19.32 -19.3 -19.28 -19.26

In
tr

am
ol

ec
ul

ar
 E

ne
rg

y

Intermolecular Energy

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

-16 -14 -12 -10 -8 -6 -4 -2

In
tr

am
ol

ec
ul

ar
 E

ne
rg

y

Intermolecular Energy

 15.14

 15.16

 15.18

 15.2

 15.22

 15.24

 15.26

 15.28

 15.3

 15.32

 15.34

-8.7 -8.65 -8.6 -8.55 -8.5

Y

X

 10

 12

 14

 16

 18

 20

 22

 24

 26

-8 -6 -4 -2 0 2 4 6 8 10 12 14

Y

X

 27.85

 27.9

 27.95

 28

 28.05

 28.1

 28.15

-8.7 -8.65 -8.6 -8.55 -8.5

Z

X

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

-8 -6 -4 -2 0 2 4 6 8 10 12 14

Z

X

Fig. 7. Positions of all non-dominated particles in objective space (top row) and three-
dimensional docking space (middle and bottom row) for instances 1hvr (left) and 4cha
(right) for all 10 runs of ClustMPSO after 512.000 evaluations; paramters used: K =
32, maxDominated = 200; different symbols represent different test runs.

ters used for ClustMPSO is depicted in Figure 5 and 6. As the fitness land-
scape in the autodocking instances has a much more complex structure than
the artificial functions, ClustMPSO can clearly benefit from a higher maximal
number of clusters K. For K ∈ {8, 16, 32, 64} the worst result of all runs was
-21.297 for instance 1hvr. For a small K (1,2, and 4) the solutions are signifi-
cantly worse. Also in instance 4cha the best average docking energies when using
K ∈ {1, 2, 4, 8} clusters are worse then the worst average docking energies when
using K ∈ {16, 32, 64, 128}.

The influence of the maximal number of iterations maxDominated, that
a swarm is allowed to be dominated is shown in Figure 6. The influence of

140 S. Janson and D. Merkle

Table 1. Sizes of the swarms and number of non-dominated particles for instances 1hvr
and 4cha after 1000 steps of algorithm ClustMPSO; K: maximal number of clusters,
mink{|Sk|}: minimal number of particles in a swarm, maxk{|Sk|}: maxmimal number
of particles in a swarm, act: number of active swarms with ≥ 1 particles, nd: number
of non-dominated particles; results are averaged over 10 runs.

1hvr 4cha
K min{|Sk|} max{|Sk|} act nd min{|Sk|} max{|Sk|} act nd

1 512 512 1 24.7 512 512 1 15
2 171.2 340.8 2 37.9 215.7 296.3 2 15.2
4 66.2 202.9 4 36.1 55.7 210.6 4 21.2
8 33.8 104.7 7.9 40.7 27.8 107.9 8 23.1

16 11.2 65.3 15.9 40.1 8.9 65.9 16 29.7
32 4.4 34 30.8 43.2 3.3 40.5 31.4 37.1
64 1.7 20.2 62.1 53.7 1.3 25.1 61.5 58.4

128 1 15.4 119.9 76.4 1 15.3 120.5 76.1

the parameter can be tremendous. In both instances the worst average docking
energies were found for the case, when dominated swarms are replaced very often
(every iteration or every 10 iterations). Although very good results were achieved
for the case maxDominated = ∞ (i.e., a swarm never gets replaced), it should
be noted that increasing the parameter may decrease exploration.

The results with respect to multiple objectives are shown in Figure 7. It can
be seen, that instance 1hvr is comparatively simple, as there is basically only one
important docking position from a biochemical point of view (note the scale of
the figures in the left column). ClustMPSO also found other solutions which were
non-dominated, but where the docking energy is much larger. These solutions
(E > −21.0) are not shown in Figure 7 as they would disproportionally distort
the non-dominated front in the most important area. Instance 4cha is much more
interesting as several different docking positions were found with ClustMPSO as
can be seen in the position of the solutions in the docking space.

The sizes of the swarms and the number of non-dominated particles for differ-
ent numbers of maximal clusters K is given in Table 1. Each number is averaged
over 10 runs with 1000 steps for each run. It can be clearly seen that on both
test instances the number of particles in the non-dominated front increases for
a larger number of maximal clusters. Note, that too many clusters can decrease
the overall performance (comp. Figure 5). Furthermore, if K is too large, the
number of active swarms (i.e., swarms with ≥ 1 particles) decreases. While for
K = 4 all 4 swarms are active in all runs, the number of active swarms decreases
to 93.9% for K = 128. Hence, using maximal 32 or 64 clusters is a good tradeoff
between diversity and good performance.

5 Conclusion

In this paper we presented the new hybrid Particle Swarm Optimization al-
gorithm for multi-objective optimization ClustMPSO. Within one iteration all

A New Multi-objective Particle Swarm Optimization Algorithm 141

particles are clustered to separate all particles into multiple swarms. Several
variants to guide the particles and to replace them were tested with respect
to multi-objective optimization. ClustMPSO was applied to a real-world prob-
lem from biochemistry. The molecule docking problem is to predict the three-
dimensional structure of a binding of a target receptor and a ligand. We showed
the ClustMPSO was able to clearly outperform a well-known and successful
Lamarckian genetic algorithm.

References

1. F.C. Bernstein, T.F. Koetzle, G.J.B. Williams, E.F. Meyer, M.D. Brice, J.R.
Rogers, O. Kennard, T. Shimanouchi, and M. Tasumi. The protein data bank: a
computer-based archival file for macromolecular structures. J. Mol. Biol., 112:535-
542, 1977.

2. I. Halperin, B. Ma, H. Wolfson, and R. Nussinov. Principles of docking: An overview
of search algorithms and a guide to scoring functions. Proteins: Structure, Function,
and Genetics, 47(4):409-443, 2002.

3. X. Hu and Russell Eberhart. Multiobjective optimization using dynamic neigh-
borhood particle swarm optimization. In D.B. Fogel et al., editor, Proc. of the
CEC2002, pages 1677-1681. IEEE Press, 2002.

4. J. Kennedy. Small worlds and mega-minds: Eects of neighborhood topology on
particle swarm performance. In P.J. Angeline et al., editor, Proc. of the Congress
on Evolutionary Computation, volume 3, pages 1931-1938. IEEE Press, 1999.

5. J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE International
Conference on Neural Networks (ICNN’95), volume 4, pages 1942-1947. IEEE
Press, 1995.

6. F. Kursawe. A Variant of Evolution Strategies for Vector Optimization. In H. P.
Schwefel and R. MÄanner, editors, Proc. 1st Workshop Parallel Problem Solving
from Nature (PPSN), volume 496 of LNCS, pages 193-197, Berlin, 1991. Springer.

7. G.M. Morris, D.S. Goodsell, R.S. Halliday, R.Huey, W.E. Hart, R.K. Belew,
and A.J. Olson. Automated docking using a lamarckian genetic algorithm and
an empirical binding free energy function. Journal of Computational Chemistry,
19(14):1639-1662, 1998.

8. S. Mostaghim and J. Teich. Covering pareto-optimal fronts by subswarms in multi-
objective particle swarm optimization. In Proc. of the Congress on Evolutionary
Computation (CEC ’04), pages 1404-1411, 2004.

9. R. Solis and T. Wets. Minimization by random search techniques. Mathematics of
Operations Research, 6:19-30, 1981.

10. F. Streichert, H. Ulmer, and A. Zell. Parallelization of multi-objective evolution-
ary algorithms using clustering algorithms. In Proc. Conf. on Evolutionary Multi-
Criterion Optimization (EMO 2005), volume 3410 of LNCS, pages 92-107, 2005.

11. M. Teodoro, G.N.Jr. Phillips, and L.E. Kavraki. Molecular docking: A problem with
thousands of degrees of freedom. In Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), pages 960-966. IEEE press, 2001.

12. G. Toscano Pulido and C.A. Coello Coello. Using Clustering Techniques to Improve
the Performance of a Particle Swarm Optimizer. In K. Deb et al., editor, Proc. of
the Genetic and Evolutionary Computation Conference (GECCO 2004). Part I,
number 3102 in LNCS, pages 225-237, Berlin, June 2004. Springer.

M.J. Blesa et al. (Eds.): HM 2005, LNCS 3636, pp. 142 – 153, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Hybrid GRASP-Path Relinking Algorithm for the
Capacitated p – hub Median Problem

Melquíades Pérez, Francisco Almeida, and J. Marcos Moreno-Vega

Escuela Técnica Superior de Ingeniería Informática,
Universidad de La Laguna

Address: DEIOC
Avda. Astrofísico Francisco Sánchez,

s/n 38271, La Laguna, Spain
Phone: -34(922) 318173, Fax: -34(922) 318170

{melperez, falmeida, jmmoreno}@ull.es

Abstract. The p – hub median problem is an NP hard location – allocation
problem, that consists of finding p points to establish facilities and the assign-
ment of the users to these points. In the capacitated version of this problem,
each hub has got a maximum capacity limiting the traffic to be assigned. A new
evolutionary approach that has been very effective for solving optimization
problems is Path Relinking, an extension of Scatter Search that links solutions
over neighborhood spaces. GRASP is a well-known randomized multistart
metaheuristic. In this paper, we present a hybrid GRASP-Path Relinking for the
capacitated p – hub median problem where the GRASP is used to construct the
population of the Path Relinking. Computational results demonstrate that the
hybrid GRASP-Path Relinking provides better solutions, in terms of both run-
ning times and solution quality.

1 Introduction

There are many real situations where several nodes must interact among each other by
sending and receiving traffic flow of some nature. The flow exchanged may represent
data, passengers, merchandises, express packages, etc. Generally, in these situations is
useful to find an optimal location of several points called hubs. The hubs act like
exchanging points. The objective is to find the location of the hubs and to allocate the
non hub nodes to the hubs minimizing an objective function that describes the inter-
changed flow and its cost. The hubs are fully interconnected and the traffic between
any pair of nodes is routed through the hubs.

This problem was first formulated, by O’kelly[11], as an integer quadratic prob-
lem. After that, different variants of the problem have been formulated. For example,
we may consider single or multiple assignments, where nodes can be assigned to one
or several hubs respectively. The hubs may have constraints on the amount of traffic
(capacity). The hubs may have some set up cost associated to the hubs, etc.

We will approach here the capacitated single allocation p-hub median problem. We
consider a variant to the problem formulated in [14], where the hubs have been estab-

A Hybrid GRASP-Path Relinking Algorithm for the Capacitated p – hub Median Problem 143

lished in advance and the set up cost is zero. In this paper we propose the application
of two heuristics methods to the capacitated p-hub median problem.

This problem can be modelized as a location – allocation problem:
Let N be a set of n demand points. We denote, for any pair of nodes i and j:

Wij = number of units sent from i to j
Cij = standard cost per unit of flow from i to j

Normally, Wii = 0 and Cii = 0, for all i, although there are some cases with Wii ≠ 0
and/or Cii ≠ 0. If one of the points, i or j, is a hub, the standard cost per unit Cij is
assumed. If they are both hubs, then the standard cost per unit of traffic is normally
reduced and it is equal to αCij, where α is a parameter. In general, α ≤ 1 to reflect the
effect of the reduced cost in inter–hubs flows. We can also consider parameters δ and
γ to capture the influence of reduced or incremented costs for non hub points. There
are not constraints for the parameters δ and γ.

Let Xij and Yj be the decision variables defined as:

=
otherwise

 hub toallocated is point if

0

ji1
X ij

=

otherwise

hub a is point if

0

j1
Y j

Let the variables:

∈

=
Nj

iji WO , denotes the total flow with origin at node i.

∈

=
Nj

jii WD , denotes the total flow with destiny at node i.

Also, let ξk be the capacity of each hub k.
Then, the capacitated single allocation p-hub median location problem can be for-

mulated as:

Constraint (1) ensures that a non hub point is allocated to a location j if a hub is lo-
cated in that site. Constraint (2) guarantees that each point is served by one and only
one hub. Constraint (3) generates the correct number of hubs. Constraint (4) guaran-
tees that the capacity of each hub is not exceeded. And finally, the classical binary
constraint (5).

Capacitated models for hubs problems have demonstrated to be a better approach
to many realistic situations than the classical single versions. The capacitated single

()
{ })(n 1,..., j and n 1,..., i forYX

)(n 1,..., j forYXDO

)(pY

)(n 1,..., i forX

(1)n 1,..., j and n 1,..., i forYX

CXXCXCXWminf(x)

jij

Ni
jjijii

Nj
j

Ni
ij

jij

i j k m k m
kmjmikjmjmikikij

:to subject

51,0,

4··

3

21

==∈

=≤+

=

==
==≤

++×=

∈

∈

∈

ξ

αγδ

144 M. Pérez, F. Almeida, and J.M. Moreno-Vega

allocation p-hub median problem is also an NP–hard problem. Furthermore, even if
the hubs are located, the problem of allocating points is also NP–hard. Therefore, it is
necessary to have recourse to heuristic solution approaches, especially when the prob-
lem contains a very large number of nodes.

In this paper, we present a new Path Relinking approach to solve the single alloca-
tion capacitated p–hub median problem. This new proposal uses systematic neighbor-
hood-based strategies to explore the feasible region of the search space and provides
good results even for large problem sizes. Furthermore, we show a hybrid algorithm
that combines GRASP and Path Relinking, using GRASP as the preprocessing method
for the Path Relinking. The paper has been structured as follows. In section 2 we
present the state of the art of the algorithms proposed for the p – hub median prob-
lems. Section 3 introduces the principles of the Path Relinking method. Section 4
describes the implementation of the Path Relinking algorithm that we apply to solve
the problem. Section 5 consists of a brief explanation of the GRASP metaheuristic and
its basic elements. Section 6 expounds the combination of GRASP and Path Relink-
ing. Finally, Section 7 reports computational results analyzing advantages and disad-
vantages of the hybrid approach. We conclude that the standard Path Relinking is
widely benefited from the hybridization.

2 The State of the Art

Several heuristics have been proposed for the p–hub problem. They can be classified
attending to the phase (location or assignment) they develop first. Some of them are
focused on the study of the locational part and others on the assignment part. The first
method to solve the p-hub problem was proposed by O’Kelly [11], based on an ex-
haustive search with two different assignment methods, HEUR1 and HEUR2. This
work introduces a set of problem instances that have been used in the literature as test
problems (CAB). Klincewicz [7] proposes more sophisticated heuristics. Foremost, he
considers the traffic among the hubs in addition to the distance criteria. These two
criteria are combined into a multicriteria assignment procedure. Klincewicz also con-
siders exchange heuristics, taking into account only the configurations that yield im-
mediately promising improvements, and proposes an associated clustering heuristic.
Klincewicz [8] also investigates Tabu Search and GRASP. The heuristics proposed by
Klincewicz provide running times better than the running times obtained with
O’Kelly’s proposals. A version of Tabu Search, called TABUHUB, is suggested in
[12]. This heuristic uses a tabu procedure for the location and allocation phases. The
computational experience developed shows that this last procedure is better than the
O’Kelly’s heuristics, HEUR1 and HEUR2. TABUHUB does not run as fast as
Klincewicz’s heuristics, but produces higher quality solutions and constitutes one of
the best heuristics known to solve the p–hub median problem. M. Pérez et al. [10]
present a hybrid method that combines a genetic algorithm with multistart search. The
main contribution is a new codification of the solutions and an associated selection of
the operators, to produce a computational behaviour that is sometimes better than
TABUHUB. Krishnamoorthy et al. [1] present new formulations reducing the number
of variables and constraints of the problem. They develop a heuristic algorithm based
on Simulated Annealing and use the upper bound provided by this heuristic to create a

A Hybrid GRASP-Path Relinking Algorithm for the Capacitated p – hub Median Problem 145

Branch & Bound solution method. Computational results for the CAB problems and
for a new set of problems (called the AP set) are presented. No comparisons with
another heuristic approaches are available.

As stated before, single allocation p-hub median problem have been extensively
studied, however, the literature about capacitated p-hub problems is scarce. In particu-
lar, the version without establishing costs that we consider here has not been solved at
all. Krishnamoorthy et al. [14] proposed the problem with fixing costs. They present a
MILP formulation with fewer variables and constraints than the previous proposals
and suggest two simple heuristics based on simulated annealing and random descent.
Aykin [15], investigates about the capacitated multiple allocation problem. At the
same time, Aykin considers direct connections between origins an destinations.

Some of the heuristics mentioned above display a good behaviour in particular
cases, however, when the size of the problem increases, the performance of the heu-
ristic decreases. Nowadays, the development of fast and efficient heuristics to solve
large instances of the p-hub problem remains a challenging problem. We present, in
this paper, an adaptation of the Path Relinking metaheuristic to this problem. This
new heuristic introduces a remarkable improvement in the size of the problem solved
while maintaining reasonable running times. Besides, we have developed an hybrid
heuristic combining GRASP and Path Relinking. This hybrid method improves the
results of the simple Path Relinking algorithm, both in running times and in the qual-
ity of the solutions.

3 Path Relinking Principles

The Path Relinking (PR) method is an evolutionary metaheuristic procedure founded
on the Scatter Search design originally formulated in Glover [4] in the 70s, but replac-
ing the Euclidean spaces used in Scatter Search with neighbourhood spaces as a basis
for combining solutions (Glover [5], Glover, Laguna and Marti [6]). Nowadays the
literature contains many different applications of the procedure to hard optimization
problems (see, e.g., the survey [6]). The method operates on a set of solutions called
the Reference Set, RS, using strategies to select, combine, improve and generate new
and better solutions from this set.

The Reference Set is a collection of the |RS| more representative solutions of the
problem, selected from an initial set of trial solutions, P.

PR applies the mechanisms of diversification and intensification to update the Ref-
erence Set and to guide the heuristic towards an optimal solution of the problem. The
diversification of PR is customarily applied by updating a subset of the Reference Set
with solutions not in the Reference Set that maximize the distance to the closest
member of Reference Set. The remaining solutions of the Reference Set are updated
through the intensification scheme. Usually, the intensification is executed by com-
bining different solutions to create new initial solutions for the local search proce-
dures.

PR uses a mechanism for combining solutions that creates one or more neighbour-
hoods for moving from one solution to another, in the manner of neighbourhood
search. Then PR executes a sequence of moves in the selected neighbourhood(s), to
generate intermediate solutions that constitute the combinations produced (by the PR

146 M. Pérez, F. Almeida, and J.M. Moreno-Vega

interpretation of the meaning of “combination”). In this way, the neighbourhood
structure characteristically produces new solutions that contain some mix of the at-
tributes of the parents, while preserving desirable properties. Multiple parents can be
used simultaneously by constructing a neighbourhood path, selecting an appropriate
evaluation criterion.

The success of PR is based on a good integration of the methods to select, combine
and improve the solutions that update the Reference Set at each step of the procedure.
The selection is carried out by partitioning the Reference Set into components. Here
we use a 2-component partitioning [6] that divides the Reference Set in two subsets
RS1 and RS2, respectively (|RS1| + |RS2| = |RS|). The first subset is composed of the
|RS1| best solutions. The |RS2| most diversified solutions are included on the second
subset. Then, two types of selection are performed. The solutions obtained by the
combination and improvement are selected to update the first subset. The second
subset is updated with the solutions in P more distant from the Reference Set.

The determination of the solutions to combine within the Reference Set is per-
formed by generating subsets of the Reference Set. The subsets can be generated, for
example, as follows: All the subsets of 2 solutions, all the subsets of 3 solutions de-
rived from the 2-solutions subsets, adding the best solution, all the subsets of i solu-
tions derived form the (i-1)-solutions subset, adding the best solution (i = 4 to RS),
etc.

After that, the solutions obtained with the combination are improved with a simple
local search.

As stated in [16] “PR can be considered an extension of the Combination Method
of Scatter Search. Instead of directly producing a new solution when combining two
or more original solutions, PR generates paths between and beyond the selected solu-
tions in the neighbourhood space”. On the other hand, the Combination Method of
Scatter Search produces solutions that belong to some path connecting the initial
solutions. For these reasons, the differences between PR and Scatter Search are quite
subtle. In fact, some authors may consider that a given implementation corresponds to
a Scatter Search and others could consider that tally with a PR.

4 Path Relinking for the Capacitated Single Allocation p-hub
 Median Problem

4.1 Codification of Solutions

We present our representation for the solutions of the p–hub problem and its utiliza-
tion within the PR approach. The matrix with restrictions (1), (2), (3) and (4) is a
natural representation of a solution. Nevertheless, this representation is difficult to use
when designing efficient combination methods. Then, we propose the following rep-
resentation:

Each solution is represented by an array of size n that indicates the hubs and the as-
signment of the rest of nodes to these hubs. Lets assume that the set of demand points
is indexed by the set L={1, … , n}, the idea of our representation is the following: the
first p positions of the array, called location–array, are the ordered indexes of the

A Hybrid GRASP-Path Relinking Algorithm for the Capacitated p – hub Median Problem 147

hubs; and the last (n – p) positions, called allocation–array, designate the allocations
of the non hub nodes, assuming that the hubs are allocated to themselves.

Suppose, for example, that n = 5, p = 2, and L = (1 2 3 4 5). In this context, the so-
lution X, where hubs are the nodes 2 and 4, and the first and the fifth nodes are as-
signed to hub 2, and the third node is assigned to hub 4, is represented with the ma-
trix:

=

00010

01000

01000

00010

00010

X

This array has the following meaning: As p is equal 2, the first two positions within s,
represent the hubs (2 and 4). Then, these two values are eliminated from L and L =
{1,3,5}. The last three positions on the array s are the assignments of the remaining
nodes in L. That is, nodes 1 and 5 are assigned to hub 2 and the node 3 is assigned to
hub 4. Note that this representation may produce feasible and infeasible solutions for
the capacitated problem.

The solutions for the capacitated problem should take into account the distribution
capacity of each node. This capacity does not be exceeded when a hub is established.
On this way, when a new solution is formed or there are movements, the capacity of
the hubs should be considered to support the distributed flow. New variables are in-
troduced to study this fact:

Total flow array: saves the total flow with origin and destiny at node i, and
is defined

∈∈

+=
Nj

ji
Nj

iji WWT

 Capacity vector: Saves the capacity of each node and it is symbolized by V.

These two arrays are sufficient to control the feasibility of the problem.
On our work, the solutions feasibility is studied at each step of the process to built

a new solution. That is, each time that a new node i is going to be assigned to a hub j,
and nodes k, l and m have been previously assigned to j, the procedure considers if
hub j admits the total flow of node i. Afterwards, the equation Tk+Tl+Tm+Ti < Vj must
be satisfied. In other case the node i could not be assigned to hub j and it should be
assigned to another hub. If i can be assigned to none of the hubs, the current solution
will be a non feasible solution.

4.2 Population Creation Method

The initial population of solutions is generated using a Multistart method. The method
operates as follows:

1 Generate a random solution and improve it with a greedy procedure in the
location phase and a greedy procedure in the allocation phase. The greedy
procedure in location was used previously in [9] with the name of LS1,
and it is based on the resolution of the 1-hub problems and 1-exchange
moves. Only new solutions are introduced in P.

is represented by the following array ()12142=s

148 M. Pérez, F. Almeida, and J.M. Moreno-Vega

2 If the improved solution does not belong to P, P is updated with this new
solution.

3 The steps 1 and 2 are repeated until the elements in P are P_size.

4.3 Reference Set Generation Method

RS is initialized with the best b1 solutions of P. Then, the b2 solutions in P – RS that
are the most disparate (dispersed) with respect to RS are added to RS. The solution t is
defined to be the most disparate solution with respect to the solutions already in RS, if
t maximizes the distance function:

d(t , RS) = min{d(t , s) / s ∈ RS}
with:

d(t,s) = ρ · d_loc(t , s) + (1 - ρ) · d_as(t , s)
where:
 d_loc(t , s) = number of different hubs in s and t
 d_as(t , s) = number of nodes with different assignment in both solutions

4.4 Subset Generation Method

We consider all the subsets of 2 solutions of the reference set. This is the stopping
rule of the pseudocode (figure 1).

4.5 Relinking Method

The relinking between each pair of solutions into each subset of the reference set is
achieved with two neighbourhood structures defined below. Moves within these
neighbourhoods determine the location relinking and leave the allocation relinking to
a random strategy. The underlying idea is that if we try to preserve the common in-
formation in location, the allocation relinking phase will be dominated by the location
relinking.

Location Relinking Neighbourhood: This neighbourhood provides moves to build
new solutions by choosing (at random) a position from the range [1 … p – 1] (where p
is the length of the location array), and preserving the places that are on the left of this
position. The moves of the neighbourhood are structured so that they yield feasible
outcomes at each step. In particular, if we consider an instance of the problem with n
= 15 and p = 5, and if we take the solutions with location arrays l1 = (7 9 | 10 11 15),
and l2 = (1 3 | 8 9 10), where | symbolizes the interchange point, then the new solution
is produced as follows:

• marks the common hubs of l1 and l2:
l1 = (1 3 | 8 9 10) l2 = (7 9 | 10 11 15)

• places on the first positions (ordered) the non marked symbols:
l1 = (1 3 | 8 9 10) l2 = (7 11 | 15 9 10)

• switchs the two tail portions:
l1 = (1 3 | 15 9 10) l2 = (7 11 | 8 9 10)

• removes the marks and reorder the resulting arrays:
l1 = (1 3 9 10 15) l2 = (7 8 9 10 11).

A Hybrid GRASP-Path Relinking Algorithm for the Capacitated p – hub Median Problem 149

Allocation Relinking Neighbourhood: This neighbourhood is defined by reference to
moves of the following type. For each pair of allocation arrays, generate a random
position in the range [1 … n – p – 1], and simultaneously execute a move from s1
towards s2 and from s2 towards s1 by swapping the two tail portions. For example, if
we consider the instance used in the location relinking and if the two allocation–
arrays to be operated are a1 = (1 1 2 3 1 5 2 3 5 4) and a2 = (2 1 3 1 4 2 5 5 2 3), the
new solutions are performed with the following process:

• generate a random position in both arrays:
a1 = (1 1 2 3 1 5 | 2 3 5 4) a2 = (2 1 3 1 4 2 | 5 5 2 3)

• switch the two tail portions:
a1 = (1 1 2 3 1 5 | 5 5 2 3) a2 = (2 1 3 1 4 2 | 2 3 5 4)

• then, the new allocation arrays are:
 a1 = (1 1 2 3 1 5 5 5 2 3) a2 = (2 1 3 1 4 2 2 3 5 4).

4.6 Improvement Method

As an improvement method, we use a greedy procedure both for location and alloca-
tion. In [9], the greedy procedure proved to be very effective. The improvement
method is applied only to the solutions with the large incoming and outcoming flow.

4.7 Reference Set Update Method

At the end of each iteration, the RS is updated with the best solution (according to the
objective value) or the most diversified solution (according to the distance function
defined above).

5 GRASP

GRASP (Greedy Randomized Adaptive Search Procedure) [3] is a constructive meta-
heuristic consisting of two phases. In the constructive phase, a solution is iteratively
constructed randomly selecting one element of the restricted candidate list. Then, in
the post-processing phase, it is attempted to improve this solution using a improved
method (generally, a descent local search). These steps are repeated until a stopping
rule is satisfied. The best overall solution is kept as the result.

5.1 GRASP for the Capacitated Single Allocation p – hub Median Problem

5.1.1 Greedy Randomized Function
The myopic greedy location function should build the solution iteratively, adding one
element to it at each time. In the case of the capacitated single allocation p-hub me-
dian problem, the greedy evaluation function is divided in two phases. A location
phase and an allocation phase.

In the location phase one element is added at each time to the set of hubs. As many
myopic criteria might be proposed, we have adapted the results obtained by Klince-
wicz [8] for the p-hub location problem, using the true improvement Si in the objec-
tive function that would result if a node i were added to the set of nodes.

150 M. Pérez, F. Almeida, and J.M. Moreno-Vega

If we denote jC
~

as the minimum cost of assigning j to a node in the current set of

hubs, the value of Si is calculated as follows:

() ()
∈

−⋅+=
Nj

jijjji CCDOS
~

At each step of the construction phase, the nodes i with largest value of Si are kept in a
candidate list. Then, a random selection is performed among the elements of the can-
didate list and the selected node is added to the set of hubs.
The allocation phase consists of an allocation to the nearest hub.

5.1.2 Local Search
As the Local Search, we use a greedy procedure for location and an allocation to the
nearest hub. The greedy procedure used in this case has been defined in 4.2. and was
previously formulated in [9].

6 Path Relinking with GRASP for the Capacitated Single
Allocation p-hub Median Problem

The combination of GRASP and PR consists of the use of GRASP as the Population
Creation Method of the PR. On this manner, we start the PR with a set of elite solu-
tions to combine them.

7 Computational Experience

The computational experience compares the behaviour of the hybrid GRASP & PR
method for the capacitated p-hub median problem, against the PR procedure. The
algorithms have been implemented using the C language programming and they have
been executed on a 2400 Mhz Intel Pentium IV PC, with 1 Gb of RAM, running the
Linux Operating System.

Our tests are performed over the AP Problem set (see [2]), corresponding to the
Australian postal office between 200 major cities. To the best of our knowledge, these
problems have not been solved in the literature. So, our tables present the comparison
between PR and GRASP+PR and the computational results obtained for problems
with n = 10, 20, 25, 40 and 50, p = 2, 3, 4 and 5, and with n = 100, p = 5, 10, 15, 20.

Since both procedures are random heuristics, they were executed 30 times on each
problem. The problem we consider on this paper is study from the computacional point
of view. This kind of study has not been proposed previously on the literature. So, the
optimal value of the objective function is not known for each parameters combination.

For each problem, the tables show the best solution obtained, and the results for both
heuristics (time measured in minutes and seconds, and the factor φ – in percent – by
which the objective function exceeds the best solution obtained during the execution):

⋅=
 solutionbest

 solutionbest - objective
100φ

A Hybrid GRASP-Path Relinking Algorithm for the Capacitated p – hub Median Problem 151

Table 1. Computational Results for the AP problem

 PR GRASP + PR
 φ φ
 CPU time CPU time

n P
Best cost
obtained % Min μ Max % Min μ Max

10 2 35476.08 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 0.11 0.18 0.25 0.15 0.22 0.39
 3 28635.25 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 0.17 0.20 0.23 0.15 0.20 0.26
 4 30793.10 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 0.18 0.19 0.22 0.18 0.21 0.27

 5
30080.61

3 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 0.21 0.26 0.28 0.22 0.27 0.31

20 2 29885.14 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 0.25 0.30 0.32 0.28 0.35 0.39
 3 29752.69 97 0.06 0.09 0.11 100 0.00 0.03 0.07
 0.23 0.29 0.34 0.25 0.35 0.38
 4 28550.62 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 0.25 0.29 0.33 0.29 0.32 0.38
 5 24858.77 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 0.27 0.36 0.41 0.28 0.35 0.40

25 2 37359.92 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 1.33 1.39 1.42 0.35 0.38 0.42
 3 42811.63 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 1.33 2.39 2.41 0.35 0.40 0.43
 4 24900.25 90 0.05 0.07 0.15 100 0.00 0.00 0.00
 1.39 2.46 3.49 0.39 0.45 0.47
 5 24169.54 97 0.02 0.08 0.11 97 0.00 0.06 0.08
 1.36 3.40 4.48 0.37 0.41 0.45

40 2 46734.69 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 2.38 2.46 3.49 0.38 0.45 0.47
 3 59999.84 100 0.00 0.00 0.00 100 0.00 0.00 0.00
 2.44 3.48 5.51 0.41 0.45 0.48
 4 51628.19 90 0.03 0.06 0.11 100 0.00 0.00 0.00
 2.48 5.50 6.55 0.45 0.46 0.49
 5 47761.54 90 0.03 0.08 0.11 90 0.00 0.01 0.03
 3.49 5.52 8.55 0.44 0.48 0.51

50 2 52655.26 80 0.03 0.08 0.11 100 0.00 0.03 0.09
 4.55 5.45 10.5 0.52 0.55 0.58
 3 51445.13 90 0.06 0.09 0.15 97 0.00 0.03 0.08
 5.05 5.58 11.3 0.51 0.53 0.56
 4 49673.34 80 0.08 0.13 0.16 90 0.00 0.04 0.06
 5.28 6.01 10.8 0.49 0.55 1.01
 5 49245.18 70 0.09 0.11 0.18 97 0.00 0.05 0.08
 18.3 20.1 29.3 1.35 1.52 2.15

100 5 85698.27 70 0.06 0.09 0.15 90 0.00 0.02 0.05
 15.3 16.2 25.0 1.15 1.18 1.25
 10 82735.11 50 0.02 0.04 0.09 80 0.00 0.04 0.07
 16.5 18.2 28.3 1.11 1.14 1.22
 15 75699.27 50 0.08 0.11 0.19 80 0.00 0.04 0.09
 25.7 28.3 33.4 2.18 12.2 18.3
 20 80003.89 30 0.11 0.23 0.27 70 0.00 0.03 0.08
 29.3 35.3 38.3 2.27 12.8 23.2

In the table below, the column labelled PR presents the results obtained for the PR
procedure and the columns labelled GRASP&PR give the results of the hybrid
GRASP&PR method. For both heuristics minimum (Min), average (μ) and maximum
(Max) values on the 30 executions are showed. The column labelled %, represents the
number of times (on percentage), that the heuristic reached the best solution obtained.
On the PR, the size of the population was P = 10, and the |RS| = b = 10. These sizes
were tuned experimentally.

152 M. Pérez, F. Almeida, and J.M. Moreno-Vega

The number of iterations of the GRASP algorithm was 10 when it was executed
alone and 5 when it was executed in combination with PR. The candidate list used in
GRASP is formed by 10 solutions. At the same time, the number of iterations of the
PR procedure was fixed between 5 and 10, both when the heuristic was executed
alone and when it was combined on the hybrid GRASP & PR. The AP problems were
chosen to yield a test set containing large problem instances.

As the table below show, the hybrid GRASP & PR procedure provides, in general
terms, a better behaviour than the unique PR. Although the running times are very
similar and, sometimes they are better for PR than for the hybrid algorithm, the qual-
ity of the solutions are better for the hybrid GRASP & PR for most of the cases, this is
not true only in one case. The variance of GRASP & PR is also lower than the PR
version. This low variance gives the method interesting robustness properties what
allows to reduce the number of executions. This reduction of the variance is mainly
due to the high quality solutions provided by the GRASP as initial population.

In conclusion, the hybrid heuristic GRASP & PR developed for the capacitated p-
hub median problem performs better than PR overall, and performs significantly bet-
ter than PR on large problem instances. We anticipate the possibility of further im-
provement of our procedure by additional refinement of the neighbourhoods used to
define moves for combining solutions. In particular, our current neighbourhoods are
designed for executing a single large step move in each, to transform the parents into
offspring for the next iteration. Neighbourhoods that transition between the solutions
using additional intermediate steps are also appropriate to consider.

Acknowledgments

This paper has been partially supported by the Spanish Ministry of Science and Tech-
nology through the projects TIC2002-04242-C03-01, TIC2002-04400-C03-03; 70%
of which are FEDER founds and, for the Canary Government project PI042004/088.

References

1. Andreas T. Ernst and Mohan Krishnamoorthy, Efficient Algorithms for the Uncapacitated
Single Allocation p-hub Median Problem. Location Science, vol. 4, No.3, (1995), 130 –
154.

2. Beasley, J.E. “OR-library” http://mscmga.ms.ic.ac.uk/info.html.
3. T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6 (1995) 109-133.
4. Glover, F. Heuristics for Integer Programming Using Surrogate Constraints. Decision Sci-

ences, Vol 8, No 1, (1977), 156 – 166.
5. Glover, F. Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic

Algorithms), Discrete Applied Mathematics, 49 (1994), 231-255.
6. Glover, F., M. Laguna and R. Marti. Fundamentals of Scatter Search and Path Relinking.

Control and Cybernetics, Vol. 29, No. 3 (2000), 653-684.
7. Klincewicz, J.G. Heuristics for the p-hub location problem. European Journal of Opera-

tional Research, Vol. 53 (1991), 25 – 37.

A Hybrid GRASP-Path Relinking Algorithm for the Capacitated p – hub Median Problem 153

8. Klincewicz, J.G. Avoiding local optima in the p-hub location problem using tabu search
and GRASP. Annals of Operation Research, Vol. 40 (1992), 283 – 302.

9. M. Pérez, F. Almeida, J. M. Moreno – Vega. Fast Heuristics for the p-hub Location Prob-
lem, presented in EWGLAX, Murcia (Spain), (1998).

10. M. Pérez, F. Almeida, J. M. Moreno – Vega. Genetic Algorithm with Multistart Search for
the p-Hub Median Problem. Proceedings of EUROMICRO 98. IEEE Computer Society
(2000), 702-707.

11. O’Kelly, M. (1986). The location of interacting hub facilities, Transportation Science, Vol
20, (1986), 92 – 106.

12. Skorin-Kapov, D & Skorin-Kapov, J. (1994). "On tabu search for the location of interact-
ing hub facilities". European Journal of Operations Research, Vol. 73, 502-509.

13. Ernst, A.T., H. Hamacher, H. Jiang, M. Krishnamoorthy and G. Woeginger (2002). Unca-
pacitated Single and Multiple Allocation p-Hub Center Problems”, to appear.

14. Ernst, A.T., M. Krishnamoorthy (1999). Solution algorithms for the capacitated single al-
location hub location problem. Annals of Operations Research, Vol. 86, 141-159.

15. Turgut Ayking (1994). Lagrangian relaxation based approaches to capacitated hub and
spoke network design problem. European Journal of Operational Research, Vol. 77, 1-23.

16. Manuel Laguna, Rafael Martí (2003). Scatter Search. Kluwer Academic Publishers.

Author Index

Almeida, Francisco 142

Bartz-Beielstein, Thomas 104
Borraz-Sánchez, C. 54

Cordón, Oscar 90

Damas, Sergio 90
Delisle, Pierre 1

El-Abd, Mohammed 32

French, Alan P. 12
Fügenschuh, Armin 21

Gagné, Caroline 1
Gravel, Marc 1

Janson, Stefan 128

Kamel, Mohamed 32
Krajecki, Michaël 1
Kubo, Mikio 66

Martins, S.L. 116
Mart́ı, Rafael 90

Merkle, Daniel 128
Midić, Uroš 42
Mladenović, Nenad 42
Moreno-Vega, J. Marcos 142

Ognjanović, Zoran 42

Pedroso, João Pedro 66
Pérez, Melqúıades 142
Plastino, A. 116
Price, Wilson L. 1

Ribeiro, M.H. 116
Ŕıos-Mercado, R.Z. 54

Santamaŕıa, J. 90
Santos, L.F. 116
Sontrop, Herman 78

Uetz, Marc 78

van der Horn, Pieter 78

Wilson, John M. 12

	Frontmatter
	Comparing Parallelization of an ACO: Message Passing vs. Shared Memory
	An LP-Based Hybrid Heuristic Procedure for the Generalized Assignment Problem with Special Ordered Sets
	Parametrized Greedy Heuristics in Theory and Practice
	A Taxonomy of Cooperative Search Algorithms
	A Hybrid Genetic and Variable Neighborhood Descent for Probabilistic SAT Problem
	A Hybrid Meta-heuristic Approach for Natural Gas Pipeline Network Optimization
	Hybrid Tabu Search for Lot Sizing Problems
	Fast Ejection Chain Algorithms for Vehicle Routing with Time Windows
	3D Inter-subject Medical Image Registration by Scatter Search
	Evolution Strategies and Threshold Selection
	A Hybrid GRASP with Data Mining for the Maximum Diversity Problem
	A New Multi-objective Particle Swarm Optimization Algorithm Using Clustering Applied to Automated Docking
	A Hybrid {\itshape GRASP-Path Relinking} Algorithm for the Capacitated {\itshape p -- hub} Median Problem
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

